Artificial Intelligence (AI) Adoption in Supply Chain Management Dynamics of Manufacturing Firms in Emerging Markets
“crossref”/

Main Article Content

Okereke Chukwuemeka Chidiadi 
Arachie Augustine Ebuka 
Onah Fortunatus Sochima 
Ndum Ngozi Blessing 

Abstract

While big firms in developed countries have embraced Artificial Intelligence (AI) for Supply Chain Management (SCM), the same cannot be said for firms in emerging markets, hence necessitating this study to examine AI adoption in plastic manufacturing firms in emerging markets, as a broad objective. The study relied on secondary qualitative data from peer-reviewed journals published between 2020-2025. Data collection followed a structured literature review protocol, and findings were analyzed thematically. The thematic analysis for the first objective, which sought to identify the types of AI applicable in SCM, indicated a clear set of AI technologies applicable to SCM in plastic firms, including machine learning, robotics, computer vision, and natural language processing. The result for objective two, which sought to determine the prospects of adopting AI in SCM plastic manufacturing firms in emerging markets, showed that plastic firms that adopt AI for their SCM stand to gain from more accurate forecasting, improved quality, lower costs, and stronger competitiveness. Findings for objective three, which assessed challenges of AI adoption in SCM in plastic manufacturing firms in emerging markets, revealed a set of interrelated barriers, including economic (costs), infrastructural (power/connectivity), technical (data availability/quality), human (skills and resistance), and institutional (security/privacy and policy). The study concluded that indeed, there are several areas AI can be adopted in SCM in manufacturing firms in emerging markets, and that when deployed, they stand to gain massively, notwithstanding the challenges they could face while attempting to adopt it. The study, therefore, among others, recommended that plastic manufacturing firms in emerging markets need to adopt practical AI tools for demand forecasting, warehouse automation, and quality control to improve efficiency, reduce waste, and enhance responsiveness.

Article Details

Okereke, C. C. ., Arachie, A., Onah, . F. S. ., & Ndum, N. B. . (2025). Artificial Intelligence (AI) Adoption in Supply Chain Management Dynamics of Manufacturing Firms in Emerging Markets. African Journal of Management and Business Research, 21(1), 129-147. https://doi.org/10.62154/ajmbr.2025.021.01017
Articles

Copyright (c) 2025 Okereke Chukwuemeka Chidiadi, Arachie Augustine Ebuka, Onah Fortunatus Sochima, Ndum Ngozi Blessing (Author)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Adewusi, A. O., Okoli, U. I., Olorunsogo, T., Adaga, E., Daraojimba, D. O., & Obi, O. C. (2024). Artificial intelligence in cybersecurity: Protecting national infrastructure: A USA. World Journal of Advanced Research and Reviews, 21(1), 2263-2275. https://doi.org/10.30574/wjarr.2024.21.1.0313 DOI: https://doi.org/10.30574/wjarr.2024.21.1.0313

Adobor, H., Awudu, I., & Norbis, M. (2023). Integrating artificial intelligence into supply chain management: promise, challenges and guidelines. International Journal of Logistics Systems and Management, 44(4), 458-488. https://dx.doi.org/10.1504/ijlsm.2023.130782 DOI: https://doi.org/10.1504/IJLSM.2023.130782

Agupugo, C. P., Ajayi, A. O., Nwanevu, C., & Oladipo, S. S. (2022). Policy and regulatory framework supporting renewable energy microgrids and energy storage systems.

Akerele, J. I., Uzoka, A., Ojukwu, P. U., & Olamijuwon, O. J. (2024). Minimizing downtime in e-commerce platforms through containerization and orchestration. International Journal of Multidisciplinary Research Updates, 8(2), 79–86. https://doi.org/10.53430/ijmru.2024.8.2.0056 DOI: https://doi.org/10.53430/ijmru.2024.8.2.0056

Akinsulire, A. A., Idemudia, C., Okwandu, A. C., & Iwuanyanwu, O. (2024). Public-private partnership frameworks for financing affordable housing: Lessons and models. International Journal of Management & Entrepreneurship Research, 6(7), 2314–2331. DOI: https://doi.org/10.51594/ijmer.v6i7.1326

Arachie A. E., Dibua E., & Idigo, P. (2023). Artificial Intelligence as a catalyst for the Sustainability of Small and Medium Scale Businesses (SMEs) in Nigeria. Annals of Management and Organization Research, 5(1), 1-11.

Arachie, A. E., Dibua, E., & Idigo, P. (2023). Artificial intelligence as a catalyst for the sustainability of small and medium scale businesses (SMEs) in Nigeria. Annals of Management and Organization Research, 5(1), 1–11. https://doi.org/10.35912/amor.v5i1.1719 DOI: https://doi.org/10.35912/amor.v5i1.1719

Arachie, A. E., Nwosu, K. C., Ugwuanyi, S. C., & Muhammed, A. I. (2025). Artificial intelligence adoption and business performance: Evidence from small and medium enterprises in emerging markets. International Journal of Public Administration and Management Research, 11(2), 69–86. http://journals.rcmss.com/index.php/ijpamr

Arachie, A. E., Nzewi, H. N., Emejulu, G., & Kekeocha, M. E. (2023). Digital literacy in a post Coronavirus era: a management perspective for small businesses in Africa. Annals of Management and Organization Research (AMOR), 1(3), 203-212. DOI: https://doi.org/10.35912/amor.v1i3.410

Arakpogun, E. O., Elsahn, Z., Olan, F., & Elsahn, F. (2021). Artificial Intelligence in Africa: Challenges and Opportunities. In The Fourth Industrial Revolution: Implementation of Artificial Intelligence for Growing Business Success (pp. 375–388). DOI: https://doi.org/10.1007/978-3-030-62796-6_22

Attah, R. U., Garba, B. M. P., Gil-Ozoudeh, I., & Iwuanyanwu, O. (2024). Enhancing supply chain resilience through artificial intelligence: Analyzing problem-solving approaches in logistics management. International Journal of Management & Entrepreneurship Research, 6(12), 3883–3901. https://doi.org/10.51594/ijmer.v6i12.1745 DOI: https://doi.org/10.51594/ijmer.v6i12.1745

Atwani, M., Hlyal, M., & Elalami, J. (2022). A Review of Artificial Intelligence applications in Supply Chain. In ITM Web of Conferences, Vol. 46, p. 03001. EDP Sciences. DOI: 10.1051/itmconf/20224603001 DOI: https://doi.org/10.1051/itmconf/20224603001

Barrie, I., Agupugo, C. P., Iguare, H. O., & Folarin, A. (2024). Leveraging machine learning to optimize renewable energy integration in developing economies. Global Journal of Engineering and Technology Advances, 20(3), 80–93. DOI: https://doi.org/10.30574/gjeta.2024.20.3.0170

Bassey, K. E., Rajput, S. A., Oladepo, O. O., & Oyewale, K. (2024). Optimizing behavioral and economic strategies for the ubiquitous integration of wireless energy transmission in smart cities.

Benbya, H., Davenport, T. H., & Pachidi, S. (2020). “Artificial Intelligence in Organizations: Current State and Future Opportunities.” MIS Quarterly Executive 19(4). DOI: https://doi.org/10.2139/ssrn.3741983

Budhwar, P., Chowdhury, S., Wood, G., Aguinis, H., Bamber, G. J., Beltran, J. R., Boselie, P., Cooke, F. L., Decker, S., DeNisi, A., Dey, P. K., Guest, D., Knoblich, A. J., Malik, A., Paauwe, J., Papagiannidis, S., Patel, C., Pereira, V., Ren, S., … Varma, A. (2023). Human resource management in the age of generative artificial intelligence: Perspectives and research directions on ChatGPT. Human Resource Management Journal, 33(3), 606 659. DOI: https://doi.org/10.1111/1748-8583.12524

Cao, G., Y. Duan, J. S. Edwards, and Y. K. Dwivedi. 2021. “Understanding Managers’ Attitudes and Behavioral Intentions towards Using Artificial Intelligence for Organizational Decision-Making.” Technovation 106:102312. https://doi.org/10.1016/j.technovation.2021.102312 DOI: https://doi.org/10.1016/j.technovation.2021.102312

Chamorro-Premuzic, T., Polli, F., & Dattner, B. (2019). Building ethical AI for talent management. Harvard Business Review.

Choi, T. (2021). Machine learning applications in supply chain forecasting. International Journal of Production Research, 59(1), 1–14.

Chollet, F. (2017). Deep learning with Python. Manning Publications.

Chopra, S., & Meindl, P. (2022). Supply chain management: Strategy, planning, and operation (8th ed.). Pearson.

Choudhury, P., Uusitalo, O., & Hartmann, E. (2022). Cost of AI adoption in supply chain management. Journal of Business Logistics, 43(1), 55–70. https://doi.org/10.1111/jbl.12268 DOI: https://doi.org/10.1111/jbl.12268

Crawford, T., Duong, S., Fueston, R., Lawani, A., Owoade, S., Uzoka, A., Parizi, R. M., & Yazdinejad, A. (2023). AI in software engineering: A survey on project management applications. arXiv preprint arXiv:2307.15224.

D’Aniello, G., Gravina, R., Gaeta, M., Fortino, G. (2022). “Situation-aware Sensor-Based Wearable Computing Systems: A Reference Architecture-Driven Review.” IEEE Sensors Journal, 22 (14): 13853–13863. https://doi.org/ 10.1109/JSEN.2022.3180902 DOI: https://doi.org/10.1109/JSEN.2022.3180902

Dellermann, D., Calma, A., Lipusch, N., Weber, T., Weigel, S., & Ebel, P. (2021). The future of human AI collaboration: A taxonomy of design knowledge for hybrid intelligence systems. arXiv preprint arXiv:2105.03354. https://arxiv.org/abs/2105.03354

Deloitte (2024). Global supply chain outlook: Digital ecosystems and sustainability. Deloitte Insights. https://www2.deloitte.com

Deloitte (2020). “The window for AI competitive advantage is narrowing how can AI adopters keep their edge?” https://www2.deloitte.com/us/en/ insights/industry/technology/ai-competitive-advantage-narrowing.html.

Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of big data: Evolution, challenges and research agenda. International Journal of Information Management, 48, 63–71. https://doi.org/10.1016/j.ijinfomgt.2019.01.021 DOI: https://doi.org/10.1016/j.ijinfomgt.2019.01.021

Dubey, R., Bryde, D. J., Blome, C., Roubaud, D., & Giannakis, M. (2021).

Facilitating artificial intelligence powered supply chain analytics through alliance management during the pandemic crises in the B2B context. Industrial Marketing Management, 96, 135–146. https://doi.org/10.1016/j.indmarman.2021.05.003 DOI: https://doi.org/10.1016/j.indmarman.2021.05.003

Dubey, R., Gunasekaran, A., Childe, S. J., Bryde, D. J., Giannakis, M., Foropon, C., Roubaud, D., & Hazen, B. T. (2020). Big data analytics and artificial intelligence pathway to operational performance under the effects of entrepreneurial orientation and environmental dynamism: A study of manufacturing organisations. International Journal of Production Economics, 226, 107599. https://doi.org/10.1016/j.ijpe.2019.107599 DOI: https://doi.org/10.1016/j.ijpe.2019.107599

Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A. K., Baabdullah, A. M., Koohang, A., Raghavan, V., Ahuja, M., & Albanna, H. (2023). “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges, and implications of generative conversational AI for research, practice, and policy. International Journal of Information Management, 71, 102642. DOI: https://doi.org/10.1016/j.ijinfomgt.2023.102642

Dwivedi, Y. K., L. Hughes, E. Ismagilova, G. Aarts, C. Coombs, T. Crick Galanos. et al. (2019). “Artificial Intelligence (AI): Multidisciplinary Perspectives on Emerging Challenges, Opportunities, and Agenda for Research, Practice and Policy.” International Journal of Information Management, 101994. DOI: https://doi.org/10.1016/j.ijinfomgt.2019.08.002

Elavarasan, R. M., & Pugazhendhi, R. (2020). Restructured society and environment: A review on potential technological strategies to control the COVID-19 pandemic. Science of the Total Environment, 725, 138858. DOI: https://doi.org/10.1016/j.scitotenv.2020.138858

Ernst & Young (2020). “How AI is automating intelligently.” https://www. ey.com/en_gl/consulting/how-ai-is-automating-intelligently.

Gao, J., Wang, H., & Sun, J. (2020). Robotics and AI for manufacturing. Robotics and Computer-Integrated Manufacturing, 64, 101943. DOI: https://doi.org/10.1016/j.rcim.2020.101943

Garcia-Murillo, M., & Annabi, H. (2020). AI adoption and global supply chain standards. Journal of Global Operations, 14(3), 211–229.

Gil-Ozoudeh, I., Iwuanyanwu, O., Okwandu, A.C., & Ike, C.S. (2023). Sustainable urban design: The role of green buildings in shaping resilient cities. International Journal of Applied Research in Social Sciences, 5(10), 674-692. DOI: https://doi.org/10.51594/ijarss.v5i10.1481

Goswami, S. S., Mondal, S., Sarkar, S., Gupta, K. K., Sahoo, S. K., & Halder, R. (2025). Artificial intelligence-enabled supply chain management: Unlocking new opportunities and challenges. Artificial Intelligence and Applications, 3(1), 110–121. https://doi.org/10.47852/bonviewAIA42021814 DOI: https://doi.org/10.47852/bonviewAIA42021814

Grover, P., Kar, A.K., & Dwivedi, Y.K. (2022). Understanding artificial intelligence adoption in operations management: Insights from the review of academic literature and social media discussions. Annals of Operations Research, 308(1–2), 177–213.

Gupta, C., Kumar, R.V. V., & Khurana, A. (2023). Artificial Intelligence integration with the supply chain, making it green and sustainable. 7th International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech), Kolkata, India, pp. 1-5, DOI: 10.1109/IEMENTech60402.2023.10423506 DOI: https://doi.org/10.1109/IEMENTech60402.2023.10423506

Helo, P., & Hao, Y. (2021). Artificial intelligence in operations management and supply chain management: an exploratory case study. Production Planning & Control, 33(16), 1573-1590, DOI: 10.1080/09537287.2021.1882690 DOI: https://doi.org/10.1080/09537287.2021.1882690

Ivanov, D., & Dolgui, A. (2020). Digital supply chain twins: Managing the ripple effect. International Journal of Production Research, 58(9), 1184–1193.

Ivanov, D., & Dolgui, A. (2021). Artificial intelligence in supply chain management: Challenges and opportunities. International Journal of Production Research, 59(7), 1924–1942.

Iwuanyanwu, O., Gil-Ozoudeh, I., Okwandu, A.C., & Ike, C.S. (2024). The role of green building materials in sustainable architecture: Innovations, challenges, and future trends. International Journal of Applied Research in Social Sciences, 6(8), 1935-1950 DOI: https://doi.org/10.51594/ijarss.v6i8.1476

Jabbour, C. J. C., Foropon, C., & Filho, J. M. (2020). When artificial intelligence meets sustainability: Implications for supply chain management. Journal of Cleaner Production, 272, 122714. https://doi.org/10.1016/j.jclepro.2020.122714 DOI: https://doi.org/10.1016/j.jclepro.2020.122714

Kamble, S. S., Gunasekaran, A., & Sharma, R. (2021). Artificial intelligence applications in supply chain. Annals of Operations Research, 308, 141–164. https://doi.org/10.1007/s10479-020-03683-9 DOI: https://doi.org/10.1007/s10479-020-03683-9

Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business horizons, 62(1), 15-25. DOI: https://doi.org/10.1016/j.bushor.2018.08.004

Kumar, M., Raut, R. D., Mangla, S. K., Ferraris, A., & Choubey, V. K. (2022). The adoption of artificial intelligence powered workforce management for effective revenue growth of micro, small, and medium scale enterprises (MSMEs). Production Planning & Control, 35(13), 1639–1655. https://doi.org/10.1080/09537287.2022. 2131620 DOI: https://doi.org/10.1080/09537287.2022.2131620

Kumari, N., Chaudhary, D., Kaur, H., & Yadav, A.L. (2023). Artificial Intelligence in Supply Chain Optimization," 2023 International Conference on IoT, Communication and Automation Technology (ICICAT), Gorakhpur, India, 2023, pp. 1-6. DOI: 10.1109/ICICAT57735.2023.10263631 DOI: https://doi.org/10.1109/ICICAT57735.2023.10263631

Levy, F. (2018). “Computers and Populism: Artificial Intelligence, Jobs, and Politics in the near Term.” Oxford Review of Economic Policy 34 (3), 393–417. https://doi.org/10.1093/oxrep/gry004 DOI: https://doi.org/10.1093/oxrep/gry004

Leyer, M., and S. Schneider. 2021. “Decision Augmentation and Automation with Artificial Intelligence: Threat or Opportunity for Managers?” Business Horizons 64(5), 711–724. https://doi.org/10.1016/j.bushor.2021.02.026 DOI: https://doi.org/10.1016/j.bushor.2021.02.026

Li, D., & Xu, L. D. (2022). Systems research on artificial intelligence. Systems Research and Behavioural Science, 39(3), 359–360. https://doi.org/10.1002/sres.2839 DOI: https://doi.org/10.1002/sres.2839

Libai, B., Bart, Y., Gensler, S., Hofacker, C. F., Kaplan, A., Kötterheinrich, K., & Sarstedt, M. (2020). Brave new world? On AI and the management of customer relationships. Journal of Interactive Marketing, 51, 44–56. https://doi.org/10.1016/j.intmar.2020.04.002 DOI: https://doi.org/10.1016/j.intmar.2020.04.002

Liu, P., Goyal, N., Joshi, M., Chen, D., & Stoyanov, V. (2020). Natural language processing in supply chains. Computational Linguistics, 46(4), 763–792.

Mahroof, K. (2019). “A Human-Centric Perspective Exploring the Readiness towards Smart Warehousing: The Case of a Large Retail Distribution Warehouse.” International Journal of Information Management 45, 176–190. https:// doi.org/10.1016/j.ijinfomgt.2018.11.008 DOI: https://doi.org/10.1016/j.ijinfomgt.2018.11.008

McKinsey & Company. (2020). The state of supply chain resilience. McKinsey Global Institute. https://www.mckinsey.com

McKinsey & Company. 2022. The State of AI in 2022 – and a Half Decade in Review. Accessed February 2, 2024. https://www.mckinsey.com/capabilities/quantumblack/Our-insights/the-state-of-ai-in-2022-and-a-half-decade- in-review.

Mikalef, P., Pappas, I. O., Krogstie, J., Jaccheri, L., & Rana, N. (2021). “Editors’ Reflections and Introduction to the Special Section on ‘Artificial Intelligence and Business Value’.” International Journal of Information Management 57, 102313. https://doi.org/10.1016/j.ijinfomgt.2021.102313 DOI: https://doi.org/10.1016/j.ijinfomgt.2021.102313

Modgil, S., Gupta, S., Stekelorum, R., & Laguir, I. (2021). AI technologies and their impact on supply chain resilience during COVID-19. International Journal of Physical Distribution & Logistics Management, 52(2), 130–149. https://doi.org/10. 1108/IJPDLM-12-2020-0434 DOI: https://doi.org/10.1108/IJPDLM-12-2020-0434

Modgil, S., Singh, R. K., & Hannibal, C. (2022). “Artificial Intelligence for Supply Chain Resilience: Learning from Covid-19.” The International Journal of Logistics Management 33(4), 1246–1268. https://doi.org/10.1108/IJLM- 02-2021-0094 DOI: https://doi.org/10.1108/IJLM-02-2021-0094

Molopa, T. (2023). Factors affecting the adoption of artificial intelligence (AI) in the supply chain and logistics industry [Master’s thesis, University of the Western Cape]. University of the Western Cape Institutional Repository. http://etd.uwc.ac.za/

Molopa, T. (2023). Factors affecting the adoption of Artificial Intelligence (AI) in the Supply Chain and Logistics Industry [Master's thesis, University of the Western Cape]. UWC Electronic Theses and Dissertations (ETD). http://etd.uwc.ac.za/

Ng, A. (2015). Machine learning: A probabilistic perspective. Stanford University Press.

Nnaji, C., & Ugwoke, R. (2022). Workforce upskilling and resistance in AI adoption: Evidence from Nigerian manufacturing firms. African Journal of Management Studies, 17(2), 88–103.

Nsisong, L. E. (2024). Leveraging artificial intelligence for enhanced supply chain optimization. Open Access Research Journal of Multidisciplinary Studies, 7(02), 001–015. DOI: https://doi.org/10.53022/oarjms.2024.7.2.0044

Nwabuike, C. C., Onodugo, V. A., Arachie, A., & Nkwunonwo, U. C. (2020). Blockchain technology for cyber security: Performance implications on emerging markets multinational corporations, overview of Nigerian internationalized banks. International Journal of Scientific & Technology Research, 9(8), 244–252.

Pournader, M., Ghaderi, H., Hassanzadegan, A., & Fahimnia, B. (2021). Artificial intelligence applications in supply chain management. International 10.1016/J.IJPE.2021.108250. DOI: https://doi.org/10.1016/j.ijpe.2021.108250

Rahim, S. A., Abdul Rahman, N. A., Ahmi, A., & Waheed, M. (2024). Identifying the factors influencing AI adoption in supply chain management to resolve supply chain disruptions. International Journal of Academic Research in Business and Social Sciences, 14(11), 210–231. https://doi.org/10.6007/IJARBSS/v14-i11/23468 DOI: https://doi.org/10.6007/IJARBSS/v14-i11/23468

Rai, A., Constantinides, P., & Sarker, S. (2019). Next-generation digital platforms: Toward human-AI hybrids. MIS Quarterly, 43(1), 3–9. DOI: https://doi.org/10.25300/MISQ/2019/431E0

Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Malaysia; Pearson Education Limited. Retrieved from https://www.scirp.org/(S(vtj3fa45qm1ean45wffcz5%205))/reference/referencespapers.aspx?referenceid=2 487817

Shankar, V. (2018). How artificial intelligence (AI) is reshaping retailing. Journal of Retailing, 94(4), vi xi. DOI: https://doi.org/10.1016/S0022-4359(18)30076-9

Sharma, R., A. Shishodia, A. Gunasekaran, H. Min, and Z. H. Munim. 2022a. “The Role of Artificial Intelligence in Supply Chain Management: Mapping the Territory.” International Journal of Production Research 60(24), 7527–7550. https://doi.org/10.1080/00207543.2022.2029611 DOI: https://doi.org/10.1080/00207543.2022.2029611

Sharma, S., Islam, N., Singh, G., & Dhir, A. (2022b). “Why Do Retail Customers Adopt Artificial Intelligence (AI) Based Autonomous Decision-Making Systems?” IEEE Transactions on Engineering Management 71:1846–1861. https://doi.org/10.1109/TEM.2022.3157976 DOI: https://doi.org/10.1109/TEM.2022.3157976

Soleimani, S. 2018. “A Perfect Triangle with: Artificial Intelligence, Supply Chain Management, and Financial Technology.” Archives of Business Research 6 (11): 5681. https://doi.org/10.14738/abr.611.5681 DOI: https://doi.org/10.14738/abr.611.5681

Stefanovic, N., & Stefanovic, D. (2009). “Supply Chain Business Intelligence: technologies, Issues and Trends.” In Artificial Intelligence: An International Perspective, 217–245. Berlin, Heidelberg: Springer. DOI: https://doi.org/10.1007/978-3-642-03226-4_12

Toorajipour, R., Sohrabpour, V., Nazarpour, A., Oghazi, P., & Fischl, M. (2021). Artificial intelligence in supply chain management: A systematic literature review. J. Bus. Res. 2021, 122, 502–517. DOI: https://doi.org/10.1016/j.jbusres.2020.09.009 DOI: https://doi.org/10.1016/j.jbusres.2020.09.009

Umana, A.U., Garba, B.M.P., & Audu, A.J. (2024). Innovations in process optimization for environmental sustainability in emerging markets. International Journal of Multidisciplinary Research Updates, 8(2), 49-63. doi: 10.53430/ijmru.2024.8.2.0053. DOI: https://doi.org/10.53430/ijmru.2024.8.2.0053

Usmani, A., Sharma, M., Bung, P., kumar, R., Ahmad, F., & Gupta, A. (2023). Key Variables Influencing Artificial Intelligence (AI) Implementation In Supply Chain Management (SCM): An Empirical Analysis On Smes (2023). Migration Letters Volume: 20,(S11), 1284-1307

Venkatesh, V., Raman, R., & Cruz-Jesus, F. (2023). AI and emerging technology adoption: A research agenda for operations management. International Journal of Production Research, 62(15), 5367–5377. https://doi.org/ 10.1080/00207543.2023.2192309 DOI: https://doi.org/10.1080/00207543.2023.2192309

Wamba, F. S., Queiroz, M. M., Guthrie, C., & Braganza, A. (2021). Industry experiences of artificial intelligence (AI): Benefits and challenges in operations and supply chain management. Production Planning & Control. https://doi.org/10.1080/09537287.2021.1882695 DOI: https://doi.org/10.1080/09537287.2021.1882695

Wamba, S. F., Dubey, R., Gunasekaran, A., & Akter, S. (2020). The performance effects of big data analytics and artificial intelligence in supply chain management. International Journal of Production Economics, 225, 107582. https://doi.org/10.1016/j.ijpe.2019.107582 DOI: https://doi.org/10.1016/j.ijpe.2019.107582

Wamba, S. F., Queiroz, M., & Trinchera, L. (2021). Organizational readiness and AI adoption in supply chains. Journal of Business Research, 124, 342–354.

Wamba-Taguimdje, S. L., Fosso Wamba, S., Kala Kamdjoug, J. R., & Tchatchouang Wanko, C. E. (2020). Influence of artificial intelligence (AI) on firm performance: The business value of AI based transformation projects. Business Process Management Journal, 26(7), 1893–1924. DOI: https://doi.org/10.1108/BPMJ-10-2019-0411

Wang, J., Huang, Z., & Liu, Y. (2020). Deep learning for quality inspection in manufacturing. Journal of Manufacturing Systems, 57, 176–186.

Weber, M., Beutter, M., Weking, J., Böhm, M., & Krcmar, H. (2022). AI Startup Business Models: Key Characteristics and Directions for Entrepreneurship Research. Business & Information Systems Engineering, 64(1), 91-109. DOI: https://doi.org/10.1007/s12599-021-00732-w

Zhao, G., Fan, W., & Zhang, C. (2022). Predictive analytics and AI in supply chain decision-making. Journal of Operations Management, 68(2), 133–148.

Zhao, G., Liu, S., Lopez, C., Lu, H., Elgueta, S., Chen, H., & Boshkoska, B. M. (2022). Blockchain and AI technologies for supply chain transparency and efficiency. Information Systems Frontiers, 24, 1387–1401. https://doi.org/10.1007/s10796-021-10185-9

Zijm, H., and M. Klumpp. 2016. “Logistics and Supply Chain Management: Developments and Trends.” In Logistics and Supply Chain Innovation, edited by H. Zijm, M. Klumpp, and U. Clausen, 1–20. Cham: Springer DOI: https://doi.org/10.1007/978-3-319-22288-2_1

Zouari, D., Ruel, S., & Viale, L. (2021). Does artificial intelligence improve supply chain resilience? International Journal of Production Research, 59(7), 1–16. https://doi.org/10.1080/00207543.2020.1815587