Enhancing Students' Understanding of Phytochemical Analysis and TLC Using Deinbollia pinnata Leaves
Main Article Content
Abstract
The phytochemical analysis of chemical compounds produced by plants offers benefits across various fields. Students were introduced to plant constituents to provide them with a better understanding of plant science. This practical demonstration using TLC techniques supported with educational intervention has motivated twelve (12) final year students’ interest in medicine/pharmaceutical, which were selected from CHEM/BIO, CHEM/MATH, CHEM/ISC and CHEM/PHY combinations. The study revealed six (6) constituents from Deinbollia pinnata leaves, which can be compounds from simple sugars, flavonoids, coumarins, fixed oils/fats, phenols, tannins, steroids, terpenoids, saponins, and alkaloids as identified through phytochemical analysis results. Thus, educators can help students explore immediate plant phytochemicals and evaluate their pharmacological activities to address global challenges related to health, nutrition, and environmental sustainability.
Article Details
Copyright (c) 2025 Yakubu Rufai (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Yakubu Rufai, Federal College of Education (FCE), Okene P.M.B 1062, Kogi State, Nigeria.
Chief Lecturer,
Chemistry Department.
Aaby, K., & Amundsen, M. R. (2023). The stability of phenolic compounds and the colour of lingonberry juice with the addition of different sweeteners during thermal treatment and storage. Heliyon, 9(5), e15959. https://doi.org/10.1016/j.heliyon.2023.e15959 DOI: https://doi.org/10.1016/j.heliyon.2023.e15959
Awasthi, N., Singh, S.K., & Yadav, P. (2024). Extraction and isolation techniques of medicinal plants: A Review. Technische Sicherheit, 24(7), 1–18.
Bharathi, D., & Lee, J. (2024). Recent Advances in Marine-Derived Compounds as Potent Antibacterial and Antifungal Agents: A Comprehensive Review. Marine Drugs, 22(8). https://doi.org/10.3390/md22080348 DOI: https://doi.org/10.3390/md22080348
Bhat, M. P., Rudrappa, M., Hugar, A., Gunagambhire, P. V., Suresh Kumar, R., Nayaka, S., Almansour, A. I., & Perumal, K. (2023). In-vitro investigation on the biological activities of squalene derived from the soil fungus Talaromyces pinophilus. Heliyon, 9(11), e21461. https://doi.org/10.1016/j.heliyon.2023.e21461 DOI: https://doi.org/10.1016/j.heliyon.2023.e21461
Bouymajane, A., Filali, F. R., Moujane, S., Majdoub, Y. O. El, Otzen, P., Channaoui, S., Ed-Dra, A., Bouddine, T., Sellam, K., Boughrous, A. A., Miceli, N., Altemimi, A. B., & Cacciola, F. (2024). Phenolic Compound, Antioxidant, Antibacterial, and In Silico Studies of Extracts from the Aerial Parts of Lactuca saligna L. Molecules, 29(3), 1–15. https://doi.org/10.3390/molecules29030596 DOI: https://doi.org/10.3390/molecules29030596
Cao, S., Liang, J., Chen, M., Xu, C., Wang, X., Qiu, L., Zhao, X., & Hu, W. (2025). Comparative analysis of extraction technologies for plant extracts and absolutes. Frontiers in Chemistry, 13(March), 1–16. https://doi.org/10.3389/fchem.2025.1536590 DOI: https://doi.org/10.3389/fchem.2025.1536590
Chaachouay, N., & Zidane, L. (2024). Plant-Derived Natural Products: A Source for Drug Discovery and Development. Drugs and Drug Candidates, 3(1), 184–207. https://doi.org/10.3390/ddc3010011 DOI: https://doi.org/10.3390/ddc3010011
College, K. P., & Pradesh, B. U. (2025). A Comprehensive Review of Phytochemicals : Health Benefits and Therapeutic. International Journal of Pharmaceutical Research and Applications Volume, 9(6), 2456–4494. https://doi.org/10.35629/4494-090613731379 DOI: https://doi.org/10.35629/4494-090613731379
Cosme, F., Aires, A., Pinto, T., Oliveira, I., Vilela, A., & Gonçalves, B. (2025). A Comprehensive Review of Bioactive Tannins in Foods and Beverages: Functional Properties, Health Benefits, and Sensory Qualities. Molecules, 30(4), 1–28. https://doi.org/10.3390/molecules30040800 DOI: https://doi.org/10.3390/molecules30040800
Dayal, B., Kulkarni, A., Lea, M., Kaur, G., Karani, W., & Singh, J. (2024). Antioxidant Activity of Plant Extracts Containing Phenolic Compounds. Asian Journal of Organic & Medicinal Chemistry, 8(3), 29–34. https://doi.org/10.14233/ajomc.2023.ajomc-p28926 DOI: https://doi.org/10.14233/ajomc.2023.AJOMC-P28926
de Melo Junior, A. F., Escouto, L., Pimpão, A. B., Peixoto, P., Brasil, G., Ronchi, S. N., Pereira, S. A., & Bissoli, N. S. (2025). Anabolic-androgen steroids: A possible independent risk factor for Cardiovascular, Kidney and Metabolic Syndrome. Toxicology and Applied Pharmacology, 495(117238), 1–14. https://doi.org/10.1016/j.taap.2025.117238 DOI: https://doi.org/10.1016/j.taap.2025.117238
Deb, S., Principal, R., Shil, D., Gujri, M., Chakraborty, J., Paul, A., Roy, S., Jit, T., Roy, D., & De, D. (2024). The potential of tannins from medicinal plants as anti-cancer agents. Journal of Medicinal Plants Studies, 12(4), 414–423. www.plantsjournal.com
El Rayess, Y., Nehme, N., Azzi-Achkouty, S., & Julien, S. G. (2024). Wine Phenolic Compounds: Chemistry, Functionality and Health Benefits. Antioxidants, 13(11), 1–21. https://doi.org/10.3390/antiox13111312 DOI: https://doi.org/10.3390/antiox13111312
García-Zavala, A., Jiménez, C. C., Martínez-Bourget, D., & Romero-Ávila, M. (2025). Exploring Thin-Layer and Column Chromatography Fundamentals via Experiential Learning with Simple and Affordable Materials. Journal of Chemical Education, April, 1–10. https://doi.org/10.1021/acs.jchemed.4c00957 DOI: https://doi.org/10.1021/acs.jchemed.4c00957
Golovinskaia, O., & Wang, C. K. (2023). The hypoglycemic potential of phenolics from functional foods and their mechanisms. Food Science and Human Wellness, 12(4), 986–1007. https://doi.org/10.1016/j.fshw.2022.10.020 DOI: https://doi.org/10.1016/j.fshw.2022.10.020
Green Institute. (2022). Deinbollia pinnata. In The Green Institute and the Green Campus Initiative (pp. 1–3).
Gupta, C. (2023). Bioactive phytochemicals on humanoid endurance & advancement of herbal medicine. Journal of Microbiology & Experimentation, 11(5), 125–135. https://doi.org/10.15406/jmen.2023.11.00400 DOI: https://doi.org/10.15406/jmen.2023.11.00400
Hossain, M. S., Wazed, M. A., Asha, S., Amin, M. R., & Shimul, I. M. (2025). Dietary Phytochemicals in Health and Disease: Mechanisms, Clinical Evidence, and Applications—A Comprehensive Review. Food Science and Nutrition, 13(3), 1–23. https://doi.org/10.1002/fsn3.70101 DOI: https://doi.org/10.1002/fsn3.70101
Ikuta, K., Ejima, A., Abe, S., & Shimba, A. (2022). Control of immunity and allergy by steroid hormones. Allergology International, 71(4), 432–436. https://doi.org/10.1016/j.alit.2022.07.006 DOI: https://doi.org/10.1016/j.alit.2022.07.006
Jadhav, P., Kadam, I., Dhamne, S., Jagtap, A., & Narayankar, J. (2024). Use of Phenolic Compounds as Anti-Inflammatory. International Journal For Multidisciplinary Research, 6(2), 1–10. https://doi.org/10.36948/ijfmr.2024.v06i02.18236 DOI: https://doi.org/10.36948/ijfmr.2024.v06i02.18236
Jhana Rhel Plantas Dulfo, Meybelle Onyot Gamutan, Jeffryll Rhome Cabusca Ibarra, Ella Jean Ampong Magpayo, Klaire Jane Akut Sabuga, Shienna Margareth Benedicto Sabijon, Justin Dave Magracia Manantan, Jan Karlo Tiongson Ecalne, & Mark Wilson Dy Lagamayo. (2025). Determination of total flavonoid content and antibacterial activity of solvent fractions from ‘Cacao’ (Theobroma cacao L.) leaves. GSC Biological and Pharmaceutical Sciences, 31(2), 040–047. https://doi.org/10.30574/gscbps.2025.31.2.0167 DOI: https://doi.org/10.30574/gscbps.2025.31.2.0167
Jomova, K., Alomar, S. Y., Valko, R., Liska, J., Nepovimova, E., Kuca, K., & Valko, M. (2025a). Flavonoids and their role in oxidative stress, inflammation, and human diseases. Chemico-Biological Interactions, 413(2), 111489. https://doi.org/10.1016/j.cbi.2025.111489
Jomova, K., Alomar, S. Y., Valko, R., Liska, J., Nepovimova, E., Kuca, K., & Valko, M. (2025b). Flavonoids and their role in oxidative stress, inflammation, and human diseases. Chemico-Biological Interactions, 413(February), 1–44. https://doi.org/10.1016/j.cbi.2025.111489 DOI: https://doi.org/10.1016/j.cbi.2025.111489
Jumba, K. (2025). The Evolution of Herbal Medicine : From Traditional Practices to Scientific. Eurasian Experiment Journal of Biological Sciences, 6(1), 10–17.
Khalid, A. A., Jabeen, Q., & Javaid, F. (2023). Anxiolytic and Antidepressant Potential of Methanolic Extract of Neurada procumbens Linn. in Mice. Dose-Response, 21(2), 1–9. https://doi.org/10.1177/15593258231169584 DOI: https://doi.org/10.1177/15593258231169584
Kowalska, T. (2022). Thin-Layer Chromatography (TLC) in the Screening of Botanicals–Its Versatile Potential and Selected Applications. Molecules, 27(19), 6607. DOI: https://doi.org/10.3390/molecules27196607
Kumar, A., Nirmal, P., Kumar, M., Jose, A., Tomer, V., Oz, E., Proestos, C., Zeng, M., Elobeid, T., Sneha, V., & Oz, F. (2023). Major Phytochemicals: Recent Advances in Health Benefits and Extraction Methods. In Molecules (Vol. 28, Issue 2). https://doi.org/10.3390/molecules28020887 DOI: https://doi.org/10.3390/molecules28020887
Lasisi, A. A., Bamidele, M. O., Balogun, S., & Adebisi, S. A. (2016). Chemical Constituents and Antibacterial Evaluation of Deinbollia pinnata (Schum. and Thonn) Sapindaceae. The Pacific Journal of Science and Technology, 17(1), 183–199.
Letchuman, S., Madhuranga, H. D. T., Kaushalya, M. B. L. N., Premarathna, A. D., & Saravanan, M. (2024). Alkaloids Unveiled: A Comprehensive Analysis of Novel Therapeutic Properties, Mechanisms, and Plant-Based Innovations. Intelligent Pharmacy, 12(3), 1–9. https://doi.org/10.1016/j.ipha.2024.09.007 DOI: https://doi.org/10.1016/j.ipha.2024.09.007
Loconsole, D., & Santamaria, P. (2021). UV lighting in horticulture: A sustainable tool for improving production quality and food safety. Horticulturae, 7(1), 1–13. https://doi.org/10.3390/horticulturae7010009 DOI: https://doi.org/10.3390/horticulturae7010009
Long, R. W., & Adams, H. D. (2023). The osmotic balancing act: When sugars matter for more than metabolism in woody plants. Global Change Biology, 29(7), 1684–1687. https://doi.org/10.1111/gcb.16572 DOI: https://doi.org/10.1111/gcb.16572
Louis, K. C., Abdul Hamid, S. H. F. W., Raffay, R., & Omar, A. F. (2022). Specialized Colorimeter for Phenol Red pH Measurement. Journal of Physics: Conference Series, 2411(1), 1–12. https://doi.org/10.1088/1742-6596/2411/1/012020 DOI: https://doi.org/10.1088/1742-6596/2411/1/012020
Lv, J., Liu, S., Hu, C., Ding, L., Wang, H., Li, X., Yang, F., Shen, Q., Zhang, H., Ma, G., Zhang, S., & Bai, Y. (2025). Saponin content in medicinal plants in response to application of organic and inorganic fertilizers: a meta-analysis. Frontiers in Plant Science, 16(February), 1=23. https://doi.org/10.3389/fpls.2025.1535170 DOI: https://doi.org/10.3389/fpls.2025.1535170
Maheshwaran, L., Nadarajah, L., Senadeera, S. P. N. N., Ranaweera, C. B., Chandana, A. K., & Pathirana, R. N. (2024). Phytochemical Testing Methodologies and Principles for Preliminary Screening/ Qualitative Testing. Asian Plant Research Journal, 12(5), 11–38. https://doi.org/10.9734/aprj/2024/v12i5267 DOI: https://doi.org/10.9734/aprj/2024/v12i5267
Martiniakova, M., Sarocka, A., Penzes, N., Biro, R., Kovacova, V., Mondockova, V., Sevcikova, A., Ciernikova, S., & Omelka, R. (2025). Protective Role of Dietary Polyphenols in the Management and Treatment of Type 2 Diabetes Mellitus. In Nutrients 17,2). https://doi.org/10.3390/nu17020275 DOI: https://doi.org/10.3390/nu17020275
Munuo, M. S., Martin, M. J., Shechambo, L. F., & Gervas, I. (2025). Effect of solvent extraction on phytochemical profile and quantification of bioactive compounds in Ocimum suave (wild). Journal of Current Opinion in Crop Science, 6(1), 27–41. https://doi.org/10.62773/jcocs.v6i1.304 DOI: https://doi.org/10.62773/jcocs.v6i1.304
Nardini, M. (2022). Phenolic Compounds in Food: Characterization and Health Benefits. Molecules, 27(3), 10–13. https://doi.org/10.3390/molecules27030783 DOI: https://doi.org/10.3390/molecules27030783
Nkwocha, C. C., Felix, J. O., Michael, L. O., & Ale, B. A. (2024). Phytochemical screening and GC-FID identification of bioactive compounds in n-hexane, ethyl acetate and methanol fractions of the methanolic extract of Azanza garckeana. Food Chemistry Advances, 4(April), 100712. https://doi.org/10.1016/j.focha.2024.100712 DOI: https://doi.org/10.1016/j.focha.2024.100712
Ogechi Onyeocha, V., & Ikejiofor Onuchukwu, A. (2024). A Review on Solvents - Dilute, Dissolve and Disperse. Journal of Material Sciences & Manufacturing Research, 5(2), 1–6. https://doi.org/10.47363/jmsmr/2024(5)167 DOI: https://doi.org/10.47363/JMSMR/2024(5)167
Ojo, M. A. (2022). Tannins in Foods: Nutritional Implications and Processing Effects of Hydrothermal Techniques on Underutilized Hard-to-Cook Legume Seeds- A Review. Preventive Nutrition and Food Science, 27(1), 14–19. https://doi.org/10.3746/pnf.2022.27.1.14 DOI: https://doi.org/10.3746/pnf.2022.27.1.14
Okocha, B. I., & Orie, K. J. (2025). Characterization and Biological Activities of Ethanol Extract of Justicia carnea. International Journal of Research and Technopreneurial Innovations, 2(1), 16–24.
Ozogul, Y., Ucar, Y., Tadesse, E. E., Rathod, N., Kulawik, P., Trif, M., Esatbeyoglu, T., & Ozogul, F. (2025). Tannins for food preservation and human health: A review of current knowledge. Applied Food Research, 5(1), 100738. https://doi.org/10.1016/j.afres.2025.100738 DOI: https://doi.org/10.1016/j.afres.2025.100738
Rawat, S. S., & Laxmi, A. (2024). Sugar signals pedal the cell cycle! Frontiers in Plant Science, 15(March), 1–13. https://doi.org/10.3389/fpls.2024.1354561 DOI: https://doi.org/10.3389/fpls.2024.1354561
Resin, P., Polytechnic, A., State, E., & State, E. (2025). Assessing the Minerals, Phytochemical and Proximate Compositions of Ficus ovata leaves in Nigeria. Nigerian Research Journal of Chemical Sciences (ISSN: 13(i), 21–32.
Rufai, Y. (2021). Phytochemicals, Antioxidant Studies of Deinbollia pinnata (Poir) Schumach. & Thonn. and its Uses in the Synthesis of Titania Nanoparticles (Issue August).
Rufai, Y., Basar, N., Chandren, S., Suleiman, K., & Yinusa, I. (2020). Antiradical Activity of 1,4-and 1,2-Benzene Dicarboxyl Esters from Deinbollia Pinnata Leaves. Journal of Chemical Society of Nigeria, 45(6), 1177–1187. https://doi.org/10.35393/1730-006-002-014 DOI: https://doi.org/10.46602/jcsn.v45i6.563
Rufai, Y., Basar, N., & Kabiru, S. (2022). Triterpenoids Characterization with Antioxidant Activity from the Aerial Part of Deinbollia pinnata. Fane-Fane International Multidisciplinary Journal, 6(2), 13–28.
Rufai, Y., Basar, N., & Sani, A. (2019a). Optimization and Isolation of 4,8,12,16-Tetramethylheptadecan-4-olide from Deinbollia pinnata. Asian Journal of Chemistry, 31(11), 2503–2511. https://doi.org/10.14233/ajchem.2019.22165
Rufai, Y., Basar, N., & Sani, A. (2019b). Optimization and Isolation of 4,8,12,16-Tetramethylheptadecan-4-olide from Deinbollia pinnata. Asian Journal of Chemistry, 31(11), 2503–2511. DOI: https://doi.org/10.14233/ajchem.2019.22165
Rufai, Y., Basar, N., & Sani, A. (2020). Deinbollia pinnata : Isolation and Characterisation of Some Phytochemicals from Aerial Parts and Their Antioxidant Potential. The Natural Products Journal, 10, 1–12. https://doi.org/10.2174/2210315510666200130110420 DOI: https://doi.org/10.2174/2210315510666200130110420
Rufai, Y., Basar, N., & Suleiman, K. (2023). Anti-inflammatory activity of Deinbollia pinnata leaves with isolation of triterpenoids. Journal of Chemical Society of Nigeria, 48(4), 751–766. DOI: https://doi.org/10.46602/jcsn.v48i4.912
Sangeeth Shyam Sundar, S. S., Rajamanickam, C., Saraswathy, S., Venkatesan, K., Balakumbahan, R., Vijayasamundeeswari, A., & Sankar, C. (2024). Sapindaceae Fruits: A Comprehensive Overview on Phytochemicals, Nutraceuticals and Health Benefits Application. Plant Science Today, 11(4), 1–15. https://doi.org/10.14719/pst.5065 DOI: https://doi.org/10.14719/pst.5065
Shah, S., & Singh, S. K. (2025). Phytochemical Analysis and Characterisation of Cancer-Cure Medicinal Plants: A Comprehensive Review. International Journal of Environmental Sciences, 11(10), 592–606. DOI: https://doi.org/10.64252/rg3fjw45
Sharaf, M. (2023). Phenolic Compounds: Promising Anti-Viral Agents: A Review. Egyptian Journal of Chemistry, 66(13), 1711–1718. https://doi.org/10.21608/EJCHEM.2023.221988.8239 DOI: https://doi.org/10.21608/ejchem.2023.221988.8239
Siddiqui, T., Khan, M. U., Sharma, V., & Gupta, K. (2024). Terpenoids in essential oils: Chemistry, classification, and potential impact on human health and industry. Phytomedicine Plus, 4(2), 100549. https://doi.org/10.1016/j.phyplu.2024.100549 DOI: https://doi.org/10.1016/j.phyplu.2024.100549
Song, X. (2024). Antibacterial, Antifungal, and Antiviral Bioactive Compounds from Natural Products. Molecules, 29(4), 4–8. https://doi.org/10.3390/molecules29040825 DOI: https://doi.org/10.3390/molecules29040825
Sotubo, S. E., Lawal, O. A., Osunsami, A. A., & Ogunwande, I. A. (2016). Constituents and insecticidal activity of Deinbollia pinnata essential oil. Natural Product Communications, 11(12), 1889–1890. https://doi.org/10.1177/1934578x1601101228 DOI: https://doi.org/10.1177/1934578X1601101228
Suebkhampet, A. (2024). Using Dye Plant Extract for Histological Staining. Journal Of Mahanakorn Veterinary Medicine, 9(1), 1–17.
Sułkowska-Ziaja, K., Trepa, M., Olechowska-Jarząb, A., Nowak, P., Ziaja, M., Kała, K., & Muszyńska, B. (2023). Natural Compounds of Fungal Origin with Antimicrobial Activity—Potential Cosmetics Applications. Pharmaceuticals, 16(9), 1–32. https://doi.org/10.3390/ph16091200 DOI: https://doi.org/10.3390/ph16091200
Timilsena, Y. P., Phosanam, A., & Stockmann, R. (2023). Perspectives on Saponins: Food Functionality and Applications. International Journal of Molecular Sciences, 24(17), 1–22. https://doi.org/10.3390/ijms241713538 DOI: https://doi.org/10.3390/ijms241713538
Tiwari, S., & Talreja, S. (2022). Thin Layer Chromatography (TLC) VS. Paper Chromatography: A Review. Acta Scientific Pharmaceutical Sciences, September, 05–09. https://doi.org/10.31080/asps.2022.06.0894 DOI: https://doi.org/10.31080/ASPS.2022.06.0894
Urbain, A., & Simões‐Pires, C. A. (2020). Thin‐Layer Chromatography for the Detection and Analysis of Bioactive Natural Products. Encyclopedia of Analytical Chemistry, December 2020, 1–29. https://doi.org/10.1002/9780470027318.a9907.pub2 DOI: https://doi.org/10.1002/9780470027318.a9907.pub2
Uzor, P. F. (2020). Alkaloids from Plants with Antimalarial Activity: A Review of Recent Studies. Evidence-Based Complementary and Alternative Medicine, 2020(8749083), 1–17. https://doi.org/10.1155/2020/8749083 DOI: https://doi.org/10.1155/2020/8749083
Widsten, P., Cruz, C. D., Fletcher, G. C., Pajak, M. A., & McGhie, T. K. (2014). Tannins and extracts of fruit byproducts: Antibacterial activity against foodborne bacteria and antioxidant capacity. Journal of Agricultural and Food Chemistry, 62(46), 11146–11156. https://doi.org/10.1021/jf503819t DOI: https://doi.org/10.1021/jf503819t
Yang, Y., & Ling, W. (2025). Health Benefits and Future Research of Phytochemicals: A Literature Review. Journal of Nutrition, 155(1), 87–101. https://doi.org/10.1016/j.tjnut.2024.11.007 DOI: https://doi.org/10.1016/j.tjnut.2024.11.007