Impact of AI on Architecture: An Exploratory Thematic Analysis

Main Article Content

Vikram Pasupuleti
Chandra Shikhi Kodete
Bharadwaj Thuraka
Varun Varma Sangaraju, PhD

Abstract

The huge impact of artificial intelligence (AI) on various spheres is commonly attested in the literature. This study is informed by the dire need for more research on the increased adoption of AI and awareness of it for architectural activities. It is aimed at exploring the impact of AI on architecture, with a view to drawing evidence from extant studies to determine the extent of its adoption and positive impact on architecture. Literature review process, interpretive devices, and content and thematic analyses are employed to show scholarly evidence for its arguments on the thematic concern. Being an exploratory research, exploratory method and qualitative approach are employed. The study relies on observation and secondary data, focusing on their thematic preoccupations in relation to its arguments. The data are sourced online from only reputable repositories and databases. The analysis demonstrates that AI has been impacting positively on the broad field of architecture, and has the capacity to optimize and transform the architecture industry with huge innovations, results, efficiency, performance, and productivity. The study concludes that AI and other cutting-edge technologies, as technological innovations, are transforming the broad field of architecture. It charges the government and stakeholders in the field to ensure significant adoption of AI and increase awareness about AI, its impact, and ethical concerns. Ethical governance and pragmatic measures can help address the ethical concerns associated with AI.

Keywords: AI, Technologies, Impact, Architecture, Optimization, Transformation

Article Details

Pasupuleti, V., Kodete, C. S., Thuraka, B., & Sangaraju, V. V. (2024). Impact of AI on Architecture: An Exploratory Thematic Analysis. African Journal of Advances in Science and Technology Research, 16(1), 117-130. https://doi.org/10.62154/ajastr.2024.016.010453
Articles

Copyright (c) 2024 Vikram Pasupuleti, Chandra Shikhi Kodete, Bharadwaj Thuraka, Varun Varma Sangaraju, PhD (Author)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Adelani, F. A., Okafor, E. S., Jacks, B. S., & Ajala, O. A. (2024). Theoretical frameworks for the role of AI and machine learning in water cybersecurity: Insights from African and U.S. applications. Computer Science & IT Research Journal, vol.5, iss.3, 681-692. DOI: 10.51594/csitrj.v5i3.928

https://doi.org/10.51594/csitrj.v5i3.928 DOI: https://doi.org/10.51594/csitrj.v5i3.928

Adewusi, A. O., Okoli, U. I., Olorunsogo, T., Adaga, E., Daraojimba, D. O., & Obi, O. C. (2024). Artificial intelligence in cybersecurity: Protecting national infrastructure: A USA review. World Journal of Advanced Research and Reviews, 21(01), 2263-2275. DOI: https://doi.org/10.30574/wjarr.2024.21.1.0313

https://doi.org/10.30574/wjarr.2024.21.1.0313 DOI: https://doi.org/10.30574/wjarr.2024.21.1.0313

Akinola, A. P. (2024). Leveraging cost-effective AI and smart technologies for rapid infrastructural development in USA. African Journal of Advances in Science and Technology Research, 15(1), 59-71. https://doi.org/10.62154/rktd4f30

https://doi.org/10.62154/rktd4f30 DOI: https://doi.org/10.62154/rktd4f30

Akinola, A. P., Thuraka, B., & Okpeseyi, S. B. A. (2024). Achieving housing affordability in the U.S. through sustained use of AI and robotic process automation for prefabricated modular construction. African Journal of Advances in Science and Technology Research, 15(1), 122-134. https://doi.org/10.62154/53t99n63

https://doi.org/10.62154/53t99n63 DOI: https://doi.org/10.62154/53t99n63

Alsakka, F., Assaf, S., El-Chami, I., & Al-Hussein, M. (2023). Computer vision applications in offsite construction. Automation in Construction, 154, 104980.

https://doi.org/10.1016/j.autcon.2023.104980 DOI: https://doi.org/10.1016/j.autcon.2023.104980

Baduge, S. K., Thilakarathna, S., Perera, J. S., Arashpour, M., Sharafi, P., Teodosio, B., Shringi, A., & Mendis, P. (2022). Artificial intelligence and smart vision for building and construction 4.0: Machine and deep learning methods and applications. Automation in Construction, 141, 104440.

https://doi.org/10.1016/j.autcon.2022.104440 DOI: https://doi.org/10.1016/j.autcon.2022.104440

Binhammad, M., Alqaydi, S., Othman, A., & Abuljadayel, L. H. (2024). The role of AI in cyber security: Safeguarding digital identity. Journal of Information Security, 15, 245-278. https://doi.org/10.4236/jis.2024.152015

https://doi.org/10.4236/jis.2024.152015 DOI: https://doi.org/10.4236/jis.2024.152015

Chaillou, S. (2019). "AI & architecture, an experimental perspective." www. medium.com/built-horizons.

Cudzik, J., & Radziszewski, K. (2018, October). Artificial intelligence aided architectural design. AI for Design and the Built Environment, 1, 77-84.

https://doi.org/10.52842/conf.ecaade.2018.1.077 DOI: https://doi.org/10.52842/conf.ecaade.2018.1.077

del Campo, M., Carlson, A., & Manninger, S. (2020, October 17). Towards hallucinating machines designing with computational vision. International Journal of Architectural Computing.

https://doi.org/10.1177/1478077120963366 DOI: https://doi.org/10.1177/1478077120963366

Govea, J., Gaibor-Naranjo, W., & Villegas-Ch, W. (2024). Transforming cybersecurity into critical energy infrastructure: A study on the effectiveness of artificial intelligence. Systems, 12, 165. https://doi.org/10.3390/systems12050165

https://doi.org/10.3390/systems12050165 DOI: https://doi.org/10.3390/systems12050165

Hoar, C., Atkin, B., & King, K. (2017). Artificial Intelligence: What it means for the built environment. Report for the Royal Institution of Chartered Surveyors, RICS, London.

Ivanova, S., Kuznetsov, A., Zverev, R., & Rada, A. (2023). Artificial intelligence methods for the construction and management of buildings. Sensors, 23(21), 8740.

https://doi.org/10.3390/s23218740 DOI: https://doi.org/10.3390/s23218740

Juhrich, S. S. (2023). Real-time safety technologies in the construction industry: A study of current state and challenges. Industrial design engineering, Master's Level 2023, Department of Business Administration, Technology and Social Sciences, Luleå University of Technology.

Kalnawat, A., Dhabliya, D., Vydehi, K., Dhablia, A., & Kumar,S. D. (2024). Safeguarding critical infrastructures: Machine learning in cybersecurity. (ICECS'24) E3S Web of Conferences, 491, 02025. https://doi.org/10.1051/e3sconf/202449102025

https://doi.org/10.1051/e3sconf/202449102025 DOI: https://doi.org/10.1051/e3sconf/202449102025

Kochovski, P. & Stankovski, V. (2021). Building applications for smart and safe construction with the DECENTER fog computing and brokerage platform. Automation in Construction, 1, 124, 103562.

https://doi.org/10.1016/j.autcon.2021.103562 DOI: https://doi.org/10.1016/j.autcon.2021.103562

Kodete, C. S., Thuraka, B., Pasupuleti, V., & Malisetty, S. (2024). Determining the efficacy of machine learning strategies in quelling cyber security threats: Evidence from selected literatures. Asian Journal of Research in Computer Science, 17(8), 24-33. DOI: 10.9734/ajrcos/2024/v17i7487

https://doi.org/10.9734/ajrcos/2024/v17i7487 DOI: https://doi.org/10.9734/ajrcos/2024/v17i7487

Lukovich, T. (2023). Artificial intelligence and architecture towards a new paradigm. Ybl Journal of Built Environment, 8(1), 31-45. doi:10.2478/jbe-2023-0003

https://doi.org/10.2478/jbe-2023-0003 DOI: https://doi.org/10.2478/jbe-2023-0003

Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information. W. H. Freeman & Co.

Marsh, M. (2020). Social data brings new life to AI for architecture. Work Design Magazine, 03.

Mérő, L. (2019). Az ész segédigéi (The auxiliary verbs of mind). Tericum, Budapest.

Mungoli, N. (2023). Leveraging AI and technology to address the challenges of underdeveloped countries. J Electrical Electron Eng, 2(3), 211-216.

https://doi.org/10.33140/JEEE.02.03.04 DOI: https://doi.org/10.33140/JEEE.02.03.04

National Strategy for Artificial Intelligence Bangladesh (2020). Information and communication technology division government of the People's Republic of Bangladesh.

Nwadinobi, V. N., Etele, V. A., Ezebube, N. C., Monyei, F. E., & Ukpere, W. I. (2024). The impact of artificial intelligence on undergraduates' effectiveness in institutions of higher learning. Educational Administration: Theory and Practice, 30(4), 6989-6996. Doi:10.53555/kuey.v30i4.2501

Nwosu, N. E., Okpeseyi, S. B., & Anyanwu, E. A. (2024). Leveraging persuasive language and critical literacy to foster ethical AI practices among students. Asian Journal of Language, Literature and Culture Studies, 7(3), 447-456. Article no.AJL2C.123273

Obiuto, N. C., Adebayo, R. A., Olajiga, O. K. & Festus-Ikhuoria, I. C. (2024). Integrating artificial intelligence in construction management: Improving project efficiency and cost-effectiveness. Int. J. Adv. Multidisc. Res. Stud., 4(2), 639-647.

https://doi.org/10.62225/2583049X.2024.4.2.2550 DOI: https://doi.org/10.62225/2583049X.2024.4.2.2550

Ogirri, O. K. (2024a). Management of projects and resources in Nigerian financial institutions: Seed Capital Microfinance Bank example. Multidisciplinary Journal of Management and Social Sciences, vol.1, no.1.

Ogirri, O. K. (2024b). The role of project management professionals in building a virile economy. Proceedings of 9th Annual International Academic Conference on Accounting and Finance, Academic Journal of the Institute of Chartered Accountants of Nigeria, 110-126.

Okusi, O. (2024a). Leveraging AI and machine learning for the protection of critical national infrastructure. Asian Journal of Research in Computer Science, 17(10), 1-11, no. AJRCOS.124252. DOI: https://doi.org/10.9734/ajrcos/2024/v17i10505

https://doi.org/10.9734/ajrcos/2024/v17i10505 DOI: https://doi.org/10.9734/ajrcos/2024/v17i10505

Okusi, O. (2024b). Cyber security techniques for detecting and preventing cross-site scripting attacks. World Journal of Innovation and Modern Technology, vol.8, no.2, 71-89. DOI: 10.56201/wjimt.v8.no2.2024.pg71.89

Otasowie, I. I., Pasupuleti, V., & Adeoye, A. A. (2024). Greenhouse gas emissions and the challenges of environmental sustainability: Leveraging AI technologies for lasting solution. African Journal of Environmental Sciences and Renewable Energy, 16(1), 99-116. https://doi.org/10.62154/ajesre.2024.016.010388

https://doi.org/10.62154/ajesre.2024.016.010388 DOI: https://doi.org/10.62154/ajesre.2024.016.010388

Oyeyemi, A. A., Okoye, A. T., Okenwa-Fadele, I. & Abiakwu F. O. (2024). Perceived effect of artificial intelligence tools on the academic performance of students in public universities in Anambra State. International Journal of Innovative Research and Advanced Studies (IJIRAS), vol.11, iss.2.

Pasupuleti, V., Thuraka, B., Kodete, C. S., & Malisetty, S. (2024). Enhancing supply chain agility and sustainability through machine learning: Optimization techniques for logistics and inventory management. Logistics, 8(3), 73. https://doi.org/10.3390/logistics8030073

https://doi.org/10.3390/logistics8030073 DOI: https://doi.org/10.3390/logistics8030073

Pena, M. L. C., Carballal, A., Rodríguez-Fern'andez, N., Santos, I., & Romero, J. (2021). Artificial intelligence applied to conceptual design. A review of its use in architecture. Automation in Construction, 124, 103550. https://doi.org/10.1016/j.autcon.2021.103550

https://doi.org/10.1016/j.autcon.2021.103550 DOI: https://doi.org/10.1016/j.autcon.2021.103550

Peramo, E. C., Jr Piedad, E., & de Leon, F. A. (2024). Advancing national development through AI: Policy recommendations for enhancing AI research and applications in the Philippines. Case Study for the Multistakeholder Forum on Science, Technology and Innovation for the SDGs, 1-5.

Pim-Wusu, M., Aigbavboa, C., Gyamfi, T. A., & Thwala, W. D. (2024). Adaptability and integration influence on adaptive capacity of small- and medium-scale construction organisations. In: Frontiers in Engineering and Built Environment. Emerald Publishing Limited.

https://doi.org/10.1108/FEBE-01-2024-0003 DOI: https://doi.org/10.1108/FEBE-01-2024-0003

PWC (2019). Data analytics (training material). PWC Academy.

Regona, M., Yigitcanlar, T., Hon, C. K. H., & Teo, M. (2023). Mapping two decades of AI in construction research: A scientometric analysis from the sustainability and construction phases lenses. Buildings, 13, 2346. https://doi.org/10.3390/buildings13092346

https://doi.org/10.3390/buildings13092346 DOI: https://doi.org/10.3390/buildings13092346

Regona, M., Yigitcanlar, T., Xia, B., & Li, R. Y. M. (2022). Opportunities and adoption challenges of AI in the construction industry: A PRISMA review. Journal of Open Innovation: Technology, Market, and Complexity, 8(1), Article number 45.

https://doi.org/10.3390/joitmc8010045 DOI: https://doi.org/10.3390/joitmc8010045

Ro, A. (2018, June). National strategy for artificial intelligence: AIFORALL. Discussion Paper, NITI Aayog, 1-115.

Schneider, C. H., Koltsova, A. & Schmitt, G. (2011). Components of parametric urban design in grasshopper: From street network to building geometry. In Proceedings of the Symposium on Simulation for Architecture and Urban Design (SIMAUD 2011), Boston, MA, 163-170.

Schwab, K. (2016). "The fourth industrial revolution: What it means, how to respond." World Economic Forum. www.weforum.org./agenda.

Taleb, H. and Musleh, M. A. (2015, February). Applying urban parametric design optimisation processes to a hot climate: Case study of the UAE. Sustainable Cities and Society, 14, 236-253.

https://doi.org/10.1016/j.scs.2014.09.001 DOI: https://doi.org/10.1016/j.scs.2014.09.001

Thapaliya, S., & Bokani, A. (2024). Leveraging artificial intelligence for enhanced cybersecurity: Insights and innovations. Sadgamaya, vol.1, iss.1, 46-53.

https://doi.org/10.3126/sadgamaya.v1i1.66888 DOI: https://doi.org/10.3126/sadgamaya.v1i1.66888

Thuraka, B., Pasupuleti, V., Malisetty, S., & Ogirri, K. O. (2024). Leveraging artificial intelligence and strategic management for success in inter/national projects in US and beyond. Journal of Engineering Research and Reports, 26(8), 49-59. DOI:10.9734/jerr/2024/v26i81228

https://doi.org/10.9734/jerr/2024/v26i81228 DOI: https://doi.org/10.9734/jerr/2024/v26i81228

Umoh, A. A., Nwasike, C. N., Tula, O. A., Adekoya, O. O., & Gidiagba, J. O. (2024). A review of smart green building technologies: Investigating the integration and impact of AI and IOT in sustainable building designs. Computer Science & IT Research Journal, 5(1), 141-165. DOI: 10.51594/csitrj.v5i.715

https://doi.org/10.51594/csitrj.v5i1.715 DOI: https://doi.org/10.51594/csitrj.v5i1.715

Venkatesh, V., Morris, M. G., Davis, G.B., & Davis, F.D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478.

https://doi.org/10.2307/30036540 DOI: https://doi.org/10.2307/30036540

Volk, M. (2024). A safer future: Leveraging the AI power to improve the cybersecurity in critical infrastructures. ELEKTROTEHNIŠKI VESTNIK, 91(3), 73-94.

Wang, P. (2012). Theories of artificial intelligence - Meta-theoretical considerations. Atlantis Press Review, vol.9.75in x 6.5in. DOI: 10.2991/978-94-91216-62-6_16

https://doi.org/10.2991/978-94-91216-62-6_16 DOI: https://doi.org/10.2991/978-94-91216-62-6_16

Wang, P. (2019). On defining artificial intelligence. Journal of Artificial General Intelligence, 10(2), 1-37.

https://doi.org/10.2478/jagi-2019-0002 DOI: https://doi.org/10.2478/jagi-2019-0002

Wusu, G. E., Alaka, H., Yusuf, W., Mporas, I., Toriola-Coker, L., & Oseghale, R. (2022). A machine learning approach for predicting critical factors determining adoption of offsite construction in Nigeria. Smart and Sustainable Built Environment (ahead-of-print).

https://doi.org/10.1108/SASBE-06-2022-0113 DOI: https://doi.org/10.1108/SASBE-06-2022-0113

Xu, Y., Zhou, Y., Sekula, P., & Ding, L. (2021). Machine learning in construction: From shallow to deep learning. Developments in the Built Environment, 6, 100045.

https://doi.org/10.1016/j.dibe.2021.100045 DOI: https://doi.org/10.1016/j.dibe.2021.100045

Yigit, Y., Ferrag, M. A., Sarker, I. H., Maglaras, L. A., Chrysoulas, C., Moradpoor, N., & Janicke, H. (2016). Critical infrastructure protection: Generative AI, challenges, and opportunities. IEEE Journal, vol.4, 1-14. DOI:10.1109/ACCESS.2017

Yigitcanlar, T., Desouza K. C., Butler L., & Roozkhosh F. (2020). Contributions and risks of artificial intelligence (AI) in building smarter cities: Insights from a systematic review of the literature. Energies, 13(6). Doi:10.3390/en13061473

https://doi.org/10.3390/en13061473 DOI: https://doi.org/10.3390/en13061473

Yu, C. (2024). AI as critical infrastructure: Safeguarding national security in the age of artificial intelligence. Preprint, 1-16. DOI:

https://doi.org/10.31219/osf.io/u4kdq DOI: https://doi.org/10.31219/osf.io/u4kdq