A Comprehensive Systematic Scoping Review of Self-Driving Vehicle Models An In-depth Analysis of Specifications, Emerging Trends, Challenges, and Future Directions
Main Article Content
Abstract
Self-driving vehicles (SDVs), also known as autonomous vehicles (AVs), are anticipated to revolutionize transportation by operating independently through the integration of machine learning algorithms, advanced processing units, and sensor networks. Numerous organizations globally are actively developing SDV models, prompting this paper’s objective to identify emerging trends and patterns in SDV development through a comprehensive systematic scoping review (SSR). This research involved selecting 85 relevant studies from an initial set of 551 records across multiple academic databases, utilizing well-defined inclusion and exclusion criteria along with snowballing techniques to ensure a thorough analysis. The findings emphasize critical technical specifications required for both full-scale and miniature SDV models, focusing on key software and hardware architectures, essential sensors, and primary suppliers. Additionally, the analysis explores publication trends, including publisher and venue distribution, authors’ affiliations, and the most active countries in SDV research. This work aims to guide researchers in designing their SDV models by identifying key challenges and exploring opportunities likely to shape future research and development in autonomous vehicle technology.
Article Details
Copyright (c) 2024 Qasim Ajao, Oluwatobi Oluwaponmile Sodiq, Lanre Sadeeq (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Qasim Ajao, National Institute of Technology, Nigeria.
Department of Electrical Engineering,
National Institute of Technology, Nigeria.
Oluwatobi Oluwaponmile Sodiq, University of Lagos, Mainland Akoka, Lagos, Nigeria.
Department of Electrical Engineering,
University of Lagos, Mainland Akoka, Lagos, Nigeria.
Lanre Sadeeq, Microsoft Corporation, Ontario, Canada.
Department of Electrical Engineering,
Microsoft Corporation, Ontario, Canada.
M. Daily, S. Medasani, R. Behringer and M. Trivedi, "Self-Driving Cars," in Computer, vol. 50, no. 12, pp. 18-23, December 2017, doi: 10.1109/MC.2017.4451204. [Online]. Available: https://doi.org/10.1109/MC.2017.4451204 DOI: https://doi.org/10.1109/MC.2017.4451204
S. Behere and M. Törngren, "A functional architecture for autonomous driving," 2015, pp. 3-10. [Online]. Available: https://doi.org/10.1145/2752489.2752491 DOI: https://doi.org/10.1145/2752489.2752491
S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya, K. Takeda, and T. Hamada, "An open approach to autonomous vehicles," IEEE Micro, vol. 35, no. 6,
pp. 60-68, 2015. [Online]. Available: https://doi.org/10.1109/MM.2015.133 DOI: https://doi.org/10.1109/MM.2015.133
A. Broggi, S. Debattisti, P. Grisleri, and M. Panciroli, "The deeva autonomous vehicle platform," pp. 692-699, 2015. [Online]. Available: https://doi.org/10.1109/IVS.2015.7225765 DOI: https://doi.org/10.1109/IVS.2015.7225765
S. Liu, J. Peng, and J. Gaudiot, "Computer, drive my car!’" Computer, vol. 50, no. 01, pp. 8-8, jan 2017. [Online]. Available: https://doi.org/10.1109/MC.2017.2 DOI: https://doi.org/10.1109/MC.2017.2
Apollo, "Apollo minibus 14 autonomous driving mini-bus," 2018 [Online].
Available: https://apollo.auto/minibus/index.html
Pony.ai, "Pony.ai autonomous mobility everywhere," 2020. [Online].
Available: https://pony.ai/en/index.htm
Waymo, "Download the waymo app," 2020. [Online]. Available: https://waymo.com/apply/
PerceptIn, "A self-driving car that guides you to the next destination," 2023. [Online]. Available: https://www.perceptin.io/
Cruise, "Cruise’s self-driving fleet makes 50,000 contactless deliveries & counting," 2020. [Online]. Available: https://medium.com/cruise/ cruise- self-driving-fleet-deliveries-2f83442cf9f3
SAE International, "Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles," 2021. [Online] Available: https://www.sae.org/standards/content/j3016_202104/
S.-C. Lin, Y. Zhang, C.-H. Hsu, M. Skach, M. E. Haque, L. Tang, and J. Mars, "The architectural implications of autonomous driving: Constraints and acceleration," SIGPLAN Not., vol. 53, no. 2, p 751-766, mar 2018. [Online]. Available: https://doi.org/10.1145/ 3296957.3173191 DOI: https://doi.org/10.1145/3296957.3173191
E. Silva, F. Soares, W. Souza and H. Freitas, "A Systematic Mapping of Electric Vehicle Prototypes: Trends and Opportunities," in IEEE Transactions on Intelligent Vehicles, doi: 10.1109/TIV.2024.3387394. [Online].
Available: https://doi.org/10.1109/TIV.2024.3387394 DOI: https://doi.org/10.1109/TIV.2024.3387394
M. Fausten, T. Huck, A. Rühle, T. Baysal, and R. Kornhaas, "Automated driving - Impacts on the vehicle architecture," in 2015 Symposium on VLSI Technology (VLSI Technology), 2015, pp. C28C31. [Online]. Available: https://doi.org/10.1109/VLSIT.2015.7223632 DOI: https://doi.org/10.1109/VLSIT.2015.7223632
M. Traub, A. Maier, and K. L. Barbehön, "Future automotive architecture and the impact of it trends," IEEE Software, vol. 34, no. 3, pp. 27-32, 2017. [Online]. Available: https://doi.org/10.1109/ MS. 2017.69 DOI: https://doi.org/10.1109/MS.2017.69
S. Liu, J. Tang, Z. Zhang, and J.-L. Gaudiot, "Computer architectures for autonomous driving," Computer, vol. 50, no. 8, pp. 18-25, 2017 [Online].
Available: https://doi.org/10.1109/MC.2017.3001256 DOI: https://doi.org/10.1109/MC.2017.3001256
F. Munir, S. Azam, M. I. Hussain, A. M. Sheri, and M. Jeon, "Autonomous vehicle: The architecture aspect of self driving car," ser. SSIP 2018. New York, NY, USA: Association for Computing Machinery, 2018, p. 1-5. [Online]. Available: https://doi.org/10.1145/3290589.3290599 DOI: https://doi.org/10.1145/3290589.3290599
K. Jo, J. Kim, D. Kim, C. Jang, and M. Sunwoo, "Development of autonomous car-part ii: A case study on the implementation of an autonomous driving system based on distributed architecture," IEEE Transactions on Industrial Electronics, vol. 62, no. 8, pp. 5119-5132, 2015. [Online]. Avail- DOI: https://doi.org/10.1109/TIE.2015.2410258
able: https://dx.doi.org/10.1109/TIE 2015.2410258
J. Ziegler, P. Bender, M. Schreiber, H. Lategahn, T. Strauss, C. Stiller, T. Dang, U. Franke, N. Appenrodt, C. G. Keller, E. Kaus, R. G. Herrtwich, C. Rabe, D. Pfeiffer, F. Lindner, F. Stein, F. Erbs M. Enzweiler, C. Knöppel, J. Hipp, M. Haueis, M. Trepte, C. Brenk, A. Tamke, M. Ghanaat, M. Braun,
A. Joos, H. Fritz, H. Mock M. Hein, and E. Zeeb, "Making bertha drive-an autonomous journey on a historic route," IEEE Intelligent Transportation Systems Magazine, vol. 6, no. 2, pp. 8-20, 2014. [Online]. Available https://doi.org/10.1109/MITS.2014.2306552 DOI: https://doi.org/10.1109/MITS.2014.2306552
M. Tropea, F. De Rango, N. Nevigato, L. Bitonti, and F. Pupo, "Scare A novel switching and collision avoidance process for connected vehicles using virtualization and edge computing paradigm," Sensors vol. 21, no. 11, 2021. [Online]. Available: https://www.mdpi.com/1424-8220/21/11/3638 DOI: https://doi.org/10.3390/s21113638
B. Yu, C. Chen, J. Tang, S. Liu, and J.-L. Gaudiot, "Autonomous vehicles digital twin: A practical paradigm for autonomous driving system development," Computer, vol. 55, no. 9, pp. 26-34, 2022. DOI: https://doi.org/10.1109/MC.2022.3159500
Nvidia, "Self-driving cars," 2020. [Online]. Available: https://www.nvidia.com/en-us/self-driving-cars/
B. Kitchenham and S. Charters, "Guidelines for performing systematic mapping study in software engineering," Keele University and Durham University Joint Report Technical report, Tech. Rep., 2007. [Online]. Available: https://www.elsevier.com/_data/promis_misc/525444systematicreviewsguide.pdf
K. Petersen, S. Vakkalanka, and L. Kuzniarz, "Guidelines for conducting systematic mapping studies in software engineering: An update," Information and Software Technology, vol. 64, pp. 1-18, 2015. [Online]. Available: https://doi.org/10.1016/j.infsof.2015.03.007 DOI: https://doi.org/10.1016/j.infsof.2015.03.007
R. Hussain and S. Zeadally, "Autonomous cars: Research results, issues, and future challenges," IEEE Communications Surveys Tutorials, vol. 21, no. 2, pp. 1275-1313, 2019. [Online]. Available: https://doi.org/10.1109/COMST.2018.2869360 DOI: https://doi.org/10.1109/COMST.2018.2869360
G. Bresson, Z. Alsayed, L. Yu, and S. Glaser, "Simultaneous localization and mapping: A survey of current trends in autonomous driving," IEEE Transactions on Intelligent Vehicles, vol. 2, no. 3, pp. 194-220, 2017. [Online]. Available: https://doi.org/10.1109/TIV.2017.2749181 DOI: https://doi.org/10.1109/TIV.2017.2749181
B. Paden, M. Cˇ áp, S. Z. Yong, D. Yershov, and E. Frazzoli, "A survey of motion planning and control techniques for selfdriving urban vehicles," IEEE Transactions on Intelligent Vehicles, vol. 1, no. 1, pp. 33-55, 2016. [Online]. Available: https://doi.org/10.1109/TIV.2016.2578706 DOI: https://doi.org/10.1109/TIV.2016.2578706
D. Bevly, X. Cao, M. Gordon, G. Ozbilgin, D. Kari, B. Nelson, J. Woodruff,
M. Barth, C. Murray, A. Kurt, K. Redmill, and U. Ozguner, "Lane change and merge maneuvers for connected and automated vehicles: A survey," IEEE Transactions on Intelligent Vehicles, vol. 1, no. 1, pp. 105-120, 2016. [Online]. Available: https://doi.org/10.1109/TIV.2015.2503342 DOI: https://doi.org/10.1109/TIV.2015.2503342
S. Mozaffari, O. Y. Al-Jarrah, M. Dianati, P. Jennings, and A. Mouzakitis, "Deep learning-based vehicle behavior prediction for autonomous driving applications: A review," IEEE Transactions on Intelligent Transportation Systems, pp. 1-15, 2020. [Online]. Available: https://doi.org/10.1109/TITS.2020.3012034 DOI: https://doi.org/10.1109/TITS.2020.3012034
S. Aradi, "Survey of deep reinforcement learning for motion planning of autonomous vehicles," IEEE Transactions on Intelligent Transportation Systems, pp. 1-20, 2020. [Online]. Available: https://doi.org/10.1109/TITS.2020.3024655 DOI: https://doi.org/10.1109/TITS.2020.3024655
J. Barnett, N. Gizinski, E. Mondragon-Parra, J. E. Siegel, D. Morris, T. Gates, E. Kassens-Noor, and P. Savolainen, "Automated vehicles sharing the road: Surveying detection and localization of pedalcyclists," IEEE Transactions on Intelligent Vehicles, pp. 1-1, 2020. [Online]. Available: https://doi.org/10.1109/TIV.2020.3046859 DOI: https://doi.org/10.1109/TIV.2020.3046859
A. El Khatib, C. Ou, and F. Karray, "Driver inattention detection in the context of next-generation autonomous vehicles design: A survey," IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 11, pp. 4483-4496, 2020. [Online]. Available: https://doi.org/10.1109/TITS.2019.2940874 DOI: https://doi.org/10.1109/TITS.2019.2940874
R. C. Brito, J. F. Loureiro, E. Todt, and R. Pereira, "A systematic mapping for the scenario of non-urban autonomous vehicle cooperation systems," in 2017 Latin American Robotics Symposium (LARS) and 2017 Brazilian Symposium on Robotics (SBR), 2017, pp. 1-6. [Online]. Available: https://doi.org/10.1109/SBR-LARS-R.2017.8215294 DOI: https://doi.org/10.1109/SBR-LARS-R.2017.8215294
S. Hakak, T. R. Gadekallu, P. K. R. Maddikunta, S. P. Ramu, P. M, C. De Alwis, and M. Liyanage, "Autonomous vehicles in 5 g and beyond: A survey," Vehicular Communications, vol. 39, p. 100551, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2214209622000985 DOI: https://doi.org/10.1016/j.vehcom.2022.100551
M. N. Ahangar, Q. Z. Ahmed, F. A. Khan, and M. Hafeez, "A survey of autonomous vehicles: Enabling communication technologies and challenges," Sensors, vol. 21, no. 3, 2021. [Online]. Available: https://www.mdpi.com/1424-8220/21/3/706 DOI: https://doi.org/10.3390/s21030706
C. Wu, Z. Cai, Y. He, and X. Lu, "A review of vehicle group intelligence in a connected environment," IEEE Transactions on Intelligent Vehicles, vol. 9, no. 1, pp. 1865-1889, 2024. DOI: https://doi.org/10.1109/TIV.2023.3321891
M. Pham and K. Xiong, "A survey on security attacks and defense techniques for connected and autonomous vehicles," Computers Security, vol. 109, p. 102269, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0167404821000936 DOI: https://doi.org/10.1016/j.cose.2021.102269
K. Kim, J. S. Kim, S. Jeong, J.-H. Park, and H. K. Kim, "Cybersecurity for autonomous vehicles: Review of attacks and defense," Computers
Security, vol. 103, p. 102150, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0167404820304235
T. Limbasiya, K. Z. Teng, S. Chattopadhyay, and J. Zhou, "A systematic survey of attack detection and prevention in connected and autonomous vehicles," Vehicular Communications, vol. 37, p. 100515, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2214209622000626 DOI: https://doi.org/10.1016/j.vehcom.2022.100515
X. Sun, F. R. Yu, and P. Zhang, "A survey on cyber-security of connected and autonomous vehicles (cavs)," IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 7, pp. 6240-6259, 2022. DOI: https://doi.org/10.1109/TITS.2021.3085297
Óscar Silva, R. Cordera, E. González-González, and S. Nogués, "Environmental impacts of autonomous vehicles: A review of the scientific literature," Science of The Total Environment, vol. 830, p. 154615, 2022. [Online]. Available: https://doi.org/10.1016/j.scitotenv.2022.154615 DOI: https://doi.org/10.1016/j.scitotenv.2022.154615
J. Li, E. Rombaut, and L. Vanhaverbeke, "A systematic mapping of agent-based models for autonomous vehicles in urban mobility and logistics: Possibilities for integrated simulation models," Computers, Environment and Urban Systems, vol. 89, p. 101686, 2021. [Online] Available: https://doi.org/10.1016/j.compenvurbsys.2021.101686 DOI: https://doi.org/10.1016/j.compenvurbsys.2021.101686
S. Liu, L. Li, J. Tang, S. Wu, and J.-L. Gaudiot, "Creating autonomous vehicle systems," Synthesis Lectures on Computer Science, vol. 8, no. 2, DOI: https://doi.org/10.2200/S01036ED1V01Y202007CSL012
pp. i-216, 2020.
ZMP, "Zmp robot for everything," 2020. [Online]. Available: https://www.zmp.co.jp/en/
S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, and W. Shi, "Edge computing for autonomous driving: Opportunities and challenges," Proceedings of the IEEE, vol. 107, no. 8, pp. 1697-1716, 2019. [Online]. Available https://doi.org/10.1109/JPROC.2019.2915983 DOI: https://doi.org/10.1109/JPROC.2019.2915983
G. Bernardo Lopes, A. Siqueira, E. Araújo, P. Santos, and S. C. Santos, "The future of autonomous cars in the daily life of cities: A systematic mapping study," in XVII Brazilian Symposium on Information Systems, ser. SBSI 2021. New York, NY, USA Association for Computing Machinery, 2021. [Online]. Available: https://doi.org/10.1145/3466933.3466990 DOI: https://doi.org/10.1145/3466933.3466990
M. A. Khan, H. E. Sayed, S. Malik, T. Zia, J. Khan, N. Alkaabi, and
H. Ignatious, "Level-5 autonomous driving-are we there yet? a review of research literature," ACM Comput. Surv., vol. 55, no. 2, jan 2022. [Online].
Available: https://doi.org/10.1145/3485767 DOI: https://doi.org/10.1145/3485767
E. Khatab, A. Onsy, M. Varley, and A. Abouelfarag, "Vulnerable objects detection for autonomous driving: A review," Integration, vol. 78, pp. 3648, 2021. [Online]. Available: https://doi.org/10.1016/j.vlsi.2021.01.002 DOI: https://doi.org/10.1016/j.vlsi.2021.01.002
J. Van Brummelen, M. O’Brien, D. Gruyer, and H. Najjaran, "Autonomous vehicle perception: The technology of today and tomorrow," Transportation research part C: emerging technologies, vol. 89, pp. 384-406, 2018. DOI: https://doi.org/10.1016/j.trc.2018.02.012
F. Rosique, P. J. Navarro, C. Fernández, and A. Padilla, "A systematic mapping of perception system and simulators for autonomous vehicles research," Sensors, vol. 19, no. 3, p. 648, 2019. DOI: https://doi.org/10.3390/s19030648
A. Moubayed, A. Shami, and A. Al-Dulaimi, "On end-to-end intelligent automation of 6 g networks," Future Internet, vol. 14, no. 6 2022. [Online]. DOI: https://doi.org/10.3390/fi14060165
Available: https://www.mdpi.com/1999-5903/14/6/165
M. Alazab, K. Soman, S. Srinivasan, S. Venkatraman, V. Q. Pham et al., "Deep learning for cyber security applications: A comprehensive survey," Authorea Preprints, 2023.
K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, "Systematic mapping studies in software engineering," in EASE’08: Proceedings of the 12th international conference on Evaluation and Assessment in Software Engineering, 2008, pp. 68-77. [Online]. Available https://dl.acm.org/doi/10.5555/2227115.2227123 DOI: https://doi.org/10.14236/ewic/EASE2008.8
P. Burgio, M. Bertogna, N. Capodieci, R. Cavicchioli, M. Sojka, P. Houdek,
A. Marongiu, P. Gai, C. Scordino, and B. Morelli, "A software stack for next-generation automotive systems on many-core heterogeneous platforms," Microprocessors and Microsystems, vol. 52, pp. 299-311, 2017. [Online]. Available: https://doi.org/10.1016/j micpro.2017.06.016 DOI: https://doi.org/10.1016/j.micpro.2017.06.016
S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi, Y. Kitsukawa, A. Monrroy, T. Ando, Y. Fujii, and T. Azumi, "Autoware on board: Enabling autonomous vehicles with embedded systems," in 2018 ACM/IEEE 9th International Conference on Cyber Physical Systems (ICCPS), 2018, pp. 287-296. [Online]. Available https://doi.org/10.1109/ICCPS.2018.00035 DOI: https://doi.org/10.1109/ICCPS.2018.00035
Y. Wang, S. Liang, S. Yao, Y. Shan, S. Han, J. Peng, and H. Luo, "Reconfigurable Processor for Deep Learning in Autonomous Vehicles," International Telecommunication Union ITU, no. 1, 2017 [Online]. Available: http://handle.itu.int/11.1002/pub/8129fdfc-en
C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. N. Clark, J. Dolan, D. Duggins, T. Galatali, C. Geyer, M. Gittleman, S. Harbaugh, M. Hebert, T. M. Howard, S. Kolski, A. Kelly, M. Likhachev, M. McNaughton,
N. Miller, K. Peterson, B. Pilnick, R. Rajkumar, P. Rybski, B. Salesky, Y.-W. Seo, S. Singh, J. Snider, A. Stentz, W. Whittaker, Z. Wolkowicki, J. Ziglar,
H. Bae, T. Brown, D. Demitrish, B. Litkouhi, J. Nickolaou, V. Sadekar, W. Zhang, J. Struble, M. Taylor, M. Darms, and D. Ferguson, "Autonomous driving in urban environments: Boss and the urban challenge," Journal of Field Robotics, vol. 25, no. 8, pp. 425-466, 2008. [Online]. Available: https://doi.org/10.1002/rob.20255 DOI: https://doi.org/10.1002/rob.20255
A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," Commun. ACM, vol. 60, no. 6, p. 84- 90, may 2017. [Online]. Available: https://doi.org/10. 1145/3065386 DOI: https://doi.org/10.1145/3065386
C.-s. Oh and J.-m. Yoon, "Hardware acceleration technology for deep- learning in autonomous vehicles," in 2019 IEEE International Conference on Big Data and Smart Computing (BigComp), 2019, pp. 1-3. [Online].
Available: https://doi.org/10.1109/BIGCOMP.2019.8679433 DOI: https://doi.org/10.1109/BIGCOMP.2019.8679433
Nvidia, "Nvida drive computing platform," 2020. [Online]. Available: https://www.nvidia.com/en-us/self-driving-cars/drive-platform/ hardware/
Google, "Tensorflow - machine learning platform," 2020. [Online]. Available: https://www.tensorflow.org/
L. M. Belmonte, R. Morales, and A. Fernández-Caballero, "Computer vision in autonomous unmanned aerial vehicles-a systematic mapping study," Applied Sciences, vol. 9, no. 15, 2019. [Online]. Available: https://doi.org/10.3390/app9153196 DOI: https://doi.org/10.3390/app9153196
J. L. Barros-Justo, F. Pinciroli, S. Matalonga, and N. MartínezAraujo, "What software reuse benefits have been transferred to the industry? a systematic mapping study," Information and Software Technology, vol. 103, pp. 1-21, 2018. [Online]. Available: https://doi.org/10.1016/j.infsof.2018.06.003 DOI: https://doi.org/10.1016/j.infsof.2018.06.003
S. Tiwari and S. S. Rathore, "Coupling and cohesion metrics for object- oriented software: A systematic mapping study," in Proceedings of the 11th Innovations in Software Engineering Conference, ser. ISEC ’18. New York, NY, USA: Association for Computing Machinery, 2018. [Online].
Available: https://doi.org/10.1145/3172871.3172878 DOI: https://doi.org/10.1145/3172871.3172878
R. Heradio, J. Chacon, H. Vargas, D. Galan, J. Saenz, L. De La Torre, and
S. Dormido, "Open-source hardware in education: A systematic mapping study," IEEE Access, vol. 6, pp. 72094-72 103, 2018. [Online]. Available: https://doi.org/10.1109/ACCESS.2018.2881929 DOI: https://doi.org/10.1109/ACCESS.2018.2881929
F. A. Lara Soares, C. Neri Nobre, and H. Cota de Freitas, "Parallel programming in computing undergraduate courses: a systematic mapping of the literature," IEEE Latin America Transactions, vol. 17, no. 08, pp. 1371-1381, 2019. [Online]. Available: https://doi.org/10.1109/TLA.2019.8932371 DOI: https://doi.org/10.1109/TLA.2019.8932371
N. Gupta, R. Vijay, P. V. Korupolu, J. Bansal, and A. Kapuria, "Architecture of autonomous vehicle simulation and control framework," in AIR ’15: Proceedings of the 2015 Conference on Advances In Robotics, no. 65. ACM, Jul. 2015, pp. 1-6. [Online]. Available: https://doi.org/10.1145/2783449.2783515 DOI: https://doi.org/10.1145/2783449.2783515
F. Kunz, D. Nuss, J. Wiest, H. Deusch, S. Reuter, F. Gritschneder,
A. Scheel, M. Stübler, M. Bach, P. Hatzelmann, C. Wild, and K. Dietmayer, "Autonomous driving at ulm university: A modular, robust, and sensor-independent fusion approach," in 2015 IEEE Intelligent Vehicles Symposium (IV), 2015, pp. 666-673. [Online]. Available: https://doi.org/10.1109/IVS.2015.7225761 DOI: https://doi.org/10.1109/IVS.2015.7225761
A. Broggi, P. Cerri, S. Debattisti, M. C. Laghi, P. Medici, D. Molinari, M. Panciroli, and A. Prioletti, "Proud-public road urban driverless-car test," IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 6, pp. 3508-3519, 2015. [Online]. Available: https://doi.org/10.1109/TITS.2015.2477556 DOI: https://doi.org/10.1109/TITS.2015.2477556
M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal,
L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba, "End to End Learning for Self-Driving Cars," pp. 1-9, 2016. [Online].
Available: https://arxiv.org/abs/1604.07316
A. Belbachir, "An embedded testbed architecture to evaluate autonomous car driving," Intelligent Service Robotics, vol. 10, no. 2, pp. 109-119, 2017. [Online]. Available: https://doi.org/10.1007/ s11370-016-0213-6 DOI: https://doi.org/10.1007/s11370-016-0213-6
W. Zong, C. Zhang, Z. Wang, J. Zhu, and Q. Chen, "Architecture design and implementation of an autonomous vehicle," IEEE Access, vol. 6, pp. 21956-21970, 2018. [Online]. Available: https://doi.org/10.1109/ACCESS.2018.2828260 DOI: https://doi.org/10.1109/ACCESS.2018.2828260
Tas¸, N. O. Salscheider, F. Poggenhans, S. Wirges, C. Bandera, M.
R. Zofka, T. Strauss, J. M. Zöllner, and C. Stiller, "Making bertha cooperate-team annieway’s entry to the 2016 grand cooperative driving challenge," IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 4, pp. 1262-1276, 2018. [Online]. Available: https://doi.org/10.1109/TITS.2017.2749974 DOI: https://doi.org/10.1109/TITS.2017.2749974
M. Aramrattana, J. Detournay, C. Englund, V. Frimodig, O. U. Jansson,
T. Larsson, W. Mostowski, V. D. Rodríguez, T. Rosenstatter, and G. Shahanoor, "Team halmstad approach to cooperative driving in the grand cooperative driving challenge 2016," IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 4, pp. 1248-1261, 2018. [Online].
Available: https://doi.org/10.1109/TITS.2017.2752359 DOI: https://doi.org/10.1109/TITS.2017.2752359
K. Belcarz, T. Białek, M. Komorkiewicz, and P. Z˙ ołnierczyk, "Developing autonomous vehicle research platform - a case study," IOP Conference Series: Materials Science and Engineering, vol. 421, no. 2, p. 022002, sep 2018. [Online]. Available: https://dx.doi.org/10.1088/1757- 899X/421/2/022002 DOI: https://doi.org/10.1088/1757-899X/421/2/022002
A. Buyval, A. Gabdullin, S. Gafurov, R. Fedorenko, and M. Lyubimov, "The architecture of the self-driving car project at innopolis university," in 2019 12th International Conference on Developments in eSystems Engineering (DeSE), 2019, pp. 504-509. [Online]. Available https://doi.org/10.1109/DeSE.2019.00098 DOI: https://doi.org/10.1109/DeSE.2019.00098
M. Buechel, J. Frtunikj, K. Becker, S. Sommer, C. Buckl, M. Armbruster, A. Marek, A. Zirkler, C. Klein, and A. Knoll, "An Automated Electric Vehicle Prototype Showing New Trends in Automotive Architectures," in 2015 IEEE 18th International Conference on Intelligent Transportation Systems. IEEE, 2015, pp. 1274-1279. [Online]. Available: https://doi.org/10.1109/ITSC.2015.209 DOI: https://doi.org/10.1109/ITSC.2015.209
D. Martín, P. Marín, A. Hussein, A. de la Escalera, and J. M. Armingol, ROS-based Architecture for Autonomous Intelligent Campus Automobile (iCab), 2016, vol. 12, no. April, pp. 257-272.
P. Xu, G. Dherbomez, E. Hery, A. Abidli, and P. Bonnifait, "System architecture of a driverless electric car in the grand cooperative driving challenge," IEEE Intelligent Transportation Systems Magazine, vol. 10, no. 1, pp. 47-59, 2018. [Online]. Available: https://doi.org/10.1109/MITS.2017.2776135 DOI: https://doi.org/10.1109/MITS.2017.2776135
A. Buchegger, K. Lassnig, S. Loigge, C. Mühlbacher, and G. Steinbauer, "An autonomous vehicle for parcel delivery in urban areas," in 2018 21st International Conference on Intelligent Transportation Systems (ITSC), 2018, pp. 2961-2967. [Online]. Available: https://doi.org/10.1109/ITSC.2018.8569339 DOI: https://doi.org/10.1109/ITSC.2018.8569339
J. Tang, S. Liu, B. Yu, and W. Shi, "PI-Edge: A Low-Power Edge Computing System for Real-Time Autonomous Driving Services," pp. 1-13, 2018. [Online]. Available: https://doi.org/10.48550/arXiv.1901.04978
T. Kessler, J. Bernhard, M. Buechel, K. Esterle, P. Hart, D. Malovetz, M. Truong Le, F. Diehl, T. Brunner, and A. Knoll, "Bridging the gap between open source software and vehicle hardware for autonomous driving," in 2019 IEEE Intelligent Vehicles Symposium (IV), 2019, pp. 1612-1619. [Online]. Available: https://doi.org/10.1109/IVS.2019.8813784 DOI: https://doi.org/10.1109/IVS.2019.8813784
J. Betz, A. Wischnewski, A. Heilmeier, F. Nobis, L. Hermansdorfer, T. Stahl, T. Herrmann, and M. Lienkamp, "A software Architecture for an Autonomous Racecar." IEEE, 2019. [Online]. Available: https://doi.org/10.1109/VTCSpring.2019.8746367 DOI: https://doi.org/10.1109/VTCSpring.2019.8746367
P. Marin-Plaza, A. Hussein, D. Martin, and A. de la Escalera "icab use case for ros-based architecture," Robotics and Autonomous Systems, vol. 118, pp. 251-262, 2019. [Online]. Available: https://doi.org/10.1016/j.robot.2019.04.008 DOI: https://doi.org/10.1016/j.robot.2019.04.008
J. Valera, L. Huaman, L. Pasapera, E. Prada, L. Soto, and L. Agapito, "Design of an autonomous electric single-seat vehicle based on environment recognition algorithms," in 2019 IEEE Sciences and Humanities International Research Conference (SHIRCON), 2019, pp. 1-4. [Online].
Available: https://doi.org/10.1109/SHIRCON48091.2019.9024852 DOI: https://doi.org/10.1109/SHIRCON48091.2019.9024852
M. Á. de Miguel, F. M. Moreno, F. García, J. M. Armingol, and R. E. Martin, "Autonomous vehicle architecture for high automation," pp. 145-152, 2020. [Online]. Available: https://doi.org/10.1007/978-3-030-45096-0-18 DOI: https://doi.org/10.1007/978-3-030-45096-0_18
S. El-Tawab, N. Sprague, and A. Mufti, "Autonomous vehicles: Building a test-bed prototype at a controlled environment," in 2020 IEEE 6th World Forum on Internet of Things (WF-IoT), 2020, pp. 1-6. [Online]. Available: https://doi.org/10.1109/WF-IoT48130.2020.9221222 DOI: https://doi.org/10.1109/WF-IoT48130.2020.9221222
R. Orjuela, J.-P. Lauffenburger, J. Ledy, M. Basset, J. Lambert, D. Bresch, and J.-J. Bockstaller, "From a classic renault twizy towards a low cost autonomous car prototype: a proof of concept," IFAC-PapersOnLine, vol. 53, no. 2, pp. 15161-15166, 2020, 21st IFAC World Congress. [Online].
Available: https://doi.org/10.1016/j.ifacol.2020.12.2083 DOI: https://doi.org/10.1016/j.ifacol.2020.12.2083
J. Lee and L. Wang, "A method for designing and analyzing automotive software architecture: A case study for an autonomous electric vehicle," in 2021 International Conference on Computer Engineering and Artificial Intelligence (ICCEAI), 2021, pp. 20-26. [Online]. Available: https://doi.org/10.1109/ICCEAI52939.2021.00004 DOI: https://doi.org/10.1109/ICCEAI52939.2021.00004
B. Prasad, Q. Y. Huang, and J.-J. Tang, "Development of a prototype ev autonomous vehicle for systematic research," in 2020 International Computer Symposium (ICS), 2020, pp. 459-461. [Online]. Available: https://doi.org/10.1109/ICS51289.2020.00096 DOI: https://doi.org/10.1109/ICS51289.2020.00096
E. Tramacere, S. Luciani, S. Feraco, A. Bonfitto, and N. Amati, "Processor-in-the-loop architecture design and experimental validation for an autonomous racing vehicle," Applied Sciences, vol. 11, no. 16, 2021. [Online].
Available: https://doi.org/10.3390/app11167225 DOI: https://doi.org/10.3390/app11167225
Y. Chung and Y.-P. Yang, "Hardware-in-the-loop simulation of self- driving electric vehicles by dynamic path planning and model predic- tive control," Electronics, vol. 10, no. 19, 2021. [Online]. Available: https://doi.org/10.3390/electronics10192447 DOI: https://doi.org/10.3390/electronics10192447
M. Reke, D. Peter, J. Schulte-Tigges, S. Schiffer, A. Ferrein,
T. Walter, and D. Matheis, "A self-driving car architec- [109] A. Mohammed, A. Abdullahi, and A. Ibrahim, "Development of a
prototype autonomous electric vehicle," Journal of Robotics and Con-
ture in ROS2." IEEE, 2020, pp. 1-6. [Online]. Available: trol (JRC), vol. 2, no. 6, pp. 559-564, 2021. [Online]. Available
https://doi.org/10.1109/SAUPEC/RobMech/PRASA48453.2020.9041020 DOI: https://doi.org/10.1109/SAUPEC/RobMech/PRASA48453.2020.9041020
https://doi.org/10.18196/jrc. 26137
H. Grady, N. Nauman, and M. S. Miah, "Data-driven hardware-in-the- [110] R. Hartono, T. N. Nizar, I. Robani, and D. A. Jatmiko, "Motion and
loop plant modeling for self-driving vehicles," in 2022 IEEE International navigation control system of a mobile robot as a prototype of an au-
Symposium on Robotic and Sensors Environments (ROSE), 2022, pp. 1-8. tonomous vehicle," IOP Conference Series: Materials Science and En-
[Online]. Available: https://doi.org/10.1109/ROSE56499.2022.997741
gineering, vol. 879, no. 1, p. 012100 , jul 2020. [Online]. Available:
NBCnews, "Gm is going all electric, will [Online]. Available: https://dx.doi.org/10.1088/1757-899X/879/1/012100 DOI: https://doi.org/10.1088/1757-899X/879/1/012100
https://www.nbenews.com/business/autos/gm-going-all-electric-will-
J. Tabor, S. Dai, V. Sreenivasan, and S. Banerjee, "city: A miniatured
ditch-gas-diesel-powered-cars-n806806
autonomous vehicle testbed," in Proceedings of the 17th ACM Workshop
Fortune, "Volkswagen will stop making gas powered cars in 2026," 2018. on Mobility in the Evolving Internet Architecture, ser. MobiArch ’22. New
[Online]. Available: https://fortune.com/2018/12/05/volkswagen-ending-
York, NY, USA: Association for Computing Machinery, 2022, p. 25-30.
gas-powered-cars/
[Online]. Available: https: //doi.org/10.1145/3556548.3559631
MotorBiscuit, "Mercedes goes all in on electric, the company [112] H. Sasamoto, R. Velázquez, S. Gutiérrez, M. Cardona, A. A Ghav-
will stop making gas engines," 2019. [Online]. Available: ifekr, and P. Visconti, "Modeling and prototype implementation of
https://www.motorbiscuit.com/mercedes-goes-all-in-on-electric-the-
an automated guided vehicle for smart factories," in 2021 IEEE
company-will-stop-making-gas/
International Conference on Machine Learning and Applied Net-
S. Azid, K. Kumar, D. Lal, and B. Sharma, "Lyapunov based driverless work Technologies (ICMLANT), 2021, pp. 1-6. [Online]. Available
vehicle in obstacle free environment," in 2017 2nd International Conference https://doi.org/10.1109/ICMLANT53170.2021.9690543 DOI: https://doi.org/10.1109/ICMLANT53170.2021.9690543
on Control and Robotics Engineering (ICCRE), 2017, pp. 53-56. [Online]. [113] M. A. Hubert, A. C. Valdiero, R. Goergen, E. Stein, R. R Regner, and B.-
Available: https://doi.org/10.1109/ICCRE.2017.7935041 DOI: https://doi.org/10.1109/ICCRE.2017.7935041
H. Maciel, "Low-cost photovoltaic maximum power point tracking project
M. A. Al Suwaidi, F. J. AlHammadi, M. M. Buhumaid, N. A. R. Ali, for autonomous electric vehicle prototype," in Proceedings of IDEAS 2019,
and T. J. Brown, "A prototype of an autonomous police car to reduce L. Pereira, J. R. H. Carvalho, P. Krus, M. Klofsten, and V. J. De Negri,
fatal accidents in dubai," in 2018 Advances in Science and Engineering Eds. Cham: Springe International Publishing, 2021, pp. 416-424. [Online].
Technology International Conferences (ASET), 2018, pp. 1-4. [Online]. Available: https://doi.org/10.1007/978-3-030-55374-6_41 DOI: https://doi.org/10.1007/978-3-030-55374-6_41
Available: https://doi.org/10.1109/ICASET.2018.8376902 DOI: https://doi.org/10.1109/ICASET.2018.8376902
R. M. P, S. Ponnan, S. Shelly, M. Z. Hussain, M. Ashraf, and A.
B. K. Sahu, B. Kumar Sahu, J. Choudhury, and A. Nag, "Development of Haldorai, "Autonomous navigation system based on a dynamic ac-
hardware setup of an autonomous robotic vehicle based on computer vision cess control architecture for the internet of vehicles," Computer and
using raspberry pi," in 2019 Innovations in Power and Advanced Com- Electrical Engineering, vol. 101, p. 108037, 2022. [Online] Available:
puting Technologies (i-PACT), vol. 1, 2019, pp. 1-5. [Online]. Available: https://doi.org/10.1016/j.compeleceng.2022.108037 DOI: https://doi.org/10.1016/j.compeleceng.2022.108037
https://doi.org/10.1109/i-PACT44901.2019.8960011 DOI: https://doi.org/10.1109/i-PACT44901.2019.8960011
J.-M. Ilié, A.-C. Chaouche, and F. Pêcheux, "E-hoa: A distributed layered
Y. Wang, L. Liu, X. Zhang, and W. Shi, "HydraOne: An In- architecture for context-aware autonomous vehicles," Procedia Computer
door Experimental Research and Education Platform for CAVs." Science, vol. 170, pp. 530-538, 2020, the 11th Internationa Conference on
Renton, WA: USENIX Association, Jul. 2019. [Online]. Available: Ambient Systems, Networks and Technologies (ANT) / The 3rd Interna-
https://www.usenix.org/conference/hotedge19/presentation/wang
tional Conference on Emerging Data and Industry 4.0 (EDI40) / Affiliated
R. Roestam and N. Hadisukmana, "Carduino: An effort towards Workshops. [Online]. Available https://doi.org/10.1016/j.procs.2020.03.121 DOI: https://doi.org/10.1016/j.procs.2020.03.121
commercial autonomous public vehicles based on arduino," in 2019 [116] S. Karaman, A. Anders, M. Boulet, J. Connor, K. Gregson, W. Guerra,
International Conference on Sustainable Engineering and Creative O. Guldner, M. Mohamoud, B. Plancher, R. Shin, and J. Vivilecchia
Computing (ICSECC), 2019, pp. 206-211. [Online]. Available: "Project-based, collaborative, algorithmic robotics for high school students:
https://doi.org/10.1109/ICSECC.2019.8907160 DOI: https://doi.org/10.1109/ICSECC.2019.8907160
Programming self-driving race cars at mit," in 2017 IEEE Integrated STEM
R. Febbo, B. Flood, J. Halloy, P. Lau, K. Wong, and A. Ayala "Autonomous Education Conference (ISEC), 2017, pp. 195-203 [Online]. Available:
vehicle control using a deep neural network and jetson nano," in Practice https://doi.org/10.1109/ISECon.2017.7910242 DOI: https://doi.org/10.1109/ISECon.2017.7910242
and Experience in Advanced Research Computing, ser. PEARC ’20. New [117] A. Aguilar-Gonzalez, C. Lozoya, L. Orona, S. Romo, and A. Roman-
York, NY, USA: Association for Computing Machinery, 2020, p. 333-338. Flores, "Campus kart: An automated guided vehicle to teach using a
[Online]. Available: https://doi.org/10.1145/3311790.3396669 DOI: https://doi.org/10.1145/3311790.3396669
multidisciplinary approach," IEEE Revista Iberoamericana de Tecnologias
M. Fathy, N. Ashraf, O. Ismail, S. Fouad, L. Shaheen, and A. Hamdy, "De- del Aprendizaje, vol. 12, no. 4, pp. 199-207, 2017 [Online]. Available:
sign and implementation of self-driving car," Procedia Computer Science, https://doi.org/10.1109/RITA.2017.2776443 DOI: https://doi.org/10.1109/RITA.2017.2776443
vol. 175, pp. 165-172, 2020, the 17 th International Conference on Mo- [118] M. Percin´ski and M. Marcinkiewicz, "Architecture of the system
bile Systems and Pervasive Computing (MobiSPC),The 15th International of 1:10 scale autonomous car Requirements-based design and
Conference on Future Networks and Communications (FNC),The 10th implementation," in 2018 International Interdisciplinary PhD
International Conference on Sustainable Energy Information Technology. Workshop (IIPhDW), 2018, pp. 263-268. [Online]. Available:
[Online]. Available https://doi.org/10.1016/j.procs.2020.07.026 DOI: https://doi.org/10.1016/j.procs.2020.07.026
https://doi.org/10.1109/IIPHDW.2018.8388370 DOI: https://doi.org/10.1109/IIPHDW.2018.8388370
F. T. El-Hassan, "Experimenting with sensors of a low-cost [119] A. R. Fayjie, S. Hossain, D. Oualid, and D.-J. Lee, "Driver-
prototype of an autonomous vehicle," IEEE Sensors Journal, less car: Autonomous driving using deep reinforcement learning
vol. 20, no. 21, pp. 13131 − 13138, 2020. [Online]. Available: in urban environment," in 2018 15th International Conference on
https://doi.org/10.1109/JSEN.2020.3006086 DOI: https://doi.org/10.1109/JSEN.2020.3006086
Ubiquitous Robots (UR), 2018, pp. 896-901. [Online]. Available
R. Ullah, I. Asghar, M. G. Griffiths, G. Evans, and R. Dennis, "An au- https://doi.org/10.1109/URAI.2018.8441797 DOI: https://doi.org/10.1109/URAI.2018.8441797
tonomous vehicle prototype for off-road applications based on deep convo- [120] B.-C.-Z. Blaga, M.-A. Deac, R. W. Y. Al-doori, M. Negru, and R. Daˇnescu,
lutional neural network," in 2022 International Conference on Engineering "Miniature autonomous vehicle development on raspberry pi," in 2018
and Emerging Technologies (ICEET), 2022, pp 1-6. [Online]. Available: IEEE 14th International Conference on Intelligent Computer Communi-
https://doi.org/10.1109/ICEET56468.2022 10007388 DOI: https://doi.org/10.1109/ICEET56468.2022
cation and Processing (ICCP), 2018, pp. 229236. [Online]. Available:
M. Ikhlayel, A. J. Iswara, A. Kurniawan, A. Zaini, and E. M. https://doi.org/10.1109/ICCP.2018.8516589 DOI: https://doi.org/10.1109/ICCP.2018.8516589
Yuniarno, "Traffic sign detection for navigation of autonomous car [121] T.-D. Do, M.-T. Duong, Q.-V. Dang, and M.-H. Le, "Realtime self-driving
prototype using convolutional neural network," in 2020 Interna- car navigation using deep neural network," in 2018 4th International Con-
tional Conference on Computer Engineering, Network, and Intelli- ference on Green Technology and Sustainable Development (GTSD), 2018,
gent Multimedia (CENIM), 2020, pp. 205-210. [Online]. Available pp. 7-12. [Online]. Available: https://doi.org/10.1109/GTSD.2018.8595590 DOI: https://doi.org/10.1109/GTSD.2018.8595590
https://doi.org/10.1109/CENIM51130.2020.9297973 DOI: https://doi.org/10.1109/CENIM51130.2020.9297973
S. K. Kwon, J. H. Seo, J.-W. Lee, and K.-D. Kim, "An approach for
D. Albin and S. Simske, "Design, implementation, and evaluation of a reliable end-to-end autonomous driving based on the simplex architecture,"
semi-autonomous, vision-based, modular unmanned ground vehicle pro- in 2018 15th International Conference on Control, Automation, Robotics
totype," in IST Int’l. Symp. on Electronic Imaging. Autonomous Vehi- and Vision (ICARCV). IEEE, 2018, pp. 1851-1856. [Online]. Available:
cles and Machines. Society for Imaging Science and Technology, 2021, https://doi.org/10.1109/ICARCV.2018.8581113 DOI: https://doi.org/10.1109/ICARCV.2018.8581113
pp. 214-1-214-9. [Online]. Available https://doi.org/10.2352/ISSN.2470-
A. Gotlib, K. Łukojc´, and M. Szczygielski, "Localization-based software
2021.17.AVM-214
architecture for 1 : 10 scale autonomous car," in 2019 International Inter-
disciplinary PhD Workshop (IIPhDW), 2019, pp. 711. [Online]. Available: https://doi.org/10.1109/IIPHDW.2019.8755418 DOI: https://doi.org/10.1109/IIPHDW.2019.8755418
R. Walambe, S. Nikte, V. Joshi, A. Ambike, N. Pitke, and M. Ghole, "Discussion on problems and solutions in hardware implementation of algorithms for a car-type autonomous vehicle," in Proceedings of the 2nd International Conference on Data Engineering and Communication Technology, A. J. Kulkarni, S. C. Satapathy, T. Kang, and A. H. Kashan, Eds. Singapore: Springer Singapore, 2019, pp. 129-136. [Online]. Available: https://doi.org/10.1007/978-981-13-1610-4_13 DOI: https://doi.org/10.1007/978-981-13-1610-4_13
C. Zhou, F. Li, and W. Cao, "Architecture design and implementation of image based autonomous car: THUNDER-1," Multimedia Tools and Applications, vol. 78, pp. 28557 − 28573, 2019. [Online]. Available: https://doi.org/10.1007/s11042-018-5816-9 DOI: https://doi.org/10.1007/s11042-018-5816-9
F. Valocky, M. Orgon, and I. Fujdiak, "Experimental autonomous car model with safety sensor in wireless network," IFAC-PapersOnLine, vol. 52, no. 27, pp. 92-97, 2019, 16th IFAC Conference on Programmable Devices and Embedded Systems PDES 2019. [Online]. Available: https://doi.org/10.1016/j.ifacol.2019.12.739 DOI: https://doi.org/10.1016/j.ifacol.2019.12.739
M. Sajjad, M. Irfan, K. Muhammad, J. D. Ser, J. Sanchez-Medina, S. Andreev, W. Ding, and J. W. Lee, "An Efficient and Scalable Simulation Model for Autonomous Vehicles With Economical Hardware," IEEE Transactions on Intelligent Transportation Systems, pp. 1718-1732, 2021. [Online]. Available: https://doi.org/10.1109/TITS.2020.2980855 DOI: https://doi.org/10.1109/TITS.2020.2980855
G. S. Pannu, M. D. Ansari, and P. Gupta, "Design and implementation of autonomous car using raspberry pi," International Journal of Computer Applications, vol. 113, no. 9, 2015. [Online]. Available: https://doi.org/10.5120/19854-1789 DOI: https://doi.org/10.5120/19854-1789
M. G. Bechtel, E. Mcellhiney, M. Kim, and H. Yun, "Deeppicar: A low-cost deep neural network-based autonomous car," in 2018 IEEE 24th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), 2018, pp. 11-21 [Online]. Available: https://doi.org/10.1109/RTCSA.2018.00011 DOI: https://doi.org/10.1109/RTCSA.2018.00011
A. K. Jain, "Working model of self-driving car using convolutional neural network, raspberry pi and arduino," in 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), 2018, pp. 1630-1635. [Online]. Available: https://doi.org/10.1109/ICECA.2018.8474620 DOI: https://doi.org/10.1109/ICECA.2018.8474620
S. Sun, J. Zheng, Z. Qiao, S. Liu, Z. Lin, and T. Bräunl, "The architecture of a driverless robot car based on eyebot system," Journal of Physics: Conference Series, vol. 1267, no. 1, p. 012099, ju 2019. [Online]. Available: https://doi.org/10.1088/1742-6596/1267/1/012099 DOI: https://doi.org/10.1088/1742-6596/1267/1/012099
P. G. Chaitra, V. Deepthi, S. Gautami, H. M. Suraj, and N. Kumar, "Convolutional neural network based working model of self driving car a study," in 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC), 2020, pp. 645-650. [Online]. Available: https://doi.org/10.1109/ICESC48915.2020.9155826 DOI: https://doi.org/10.1109/ICESC48915.2020.9155826
B. Pehlivan, C. Kahraman, D. Kurtel, M. Nakp, and C. Güzelis¸, "Realtime implementation of mini autonomous car based on mobilenet single shot detector," in 2020 Innovations in Intelligent Systems and Applications Conference (ASYU), 2020, pp. 1-6. [Online]. Available https://doi.org/10.1109/ASYU50717.2020.9259830 DOI: https://doi.org/10.1109/ASYU50717.2020.9259830
S. Studio, "Robot car kitrc smart car chassis kit," 2020. [Online]. Available: https://www.seeedstudio.com/Robot-car-Kit-RC-Smart-Car-Chassis- p-4226.html
F1tenth, "F1/10 autonomous racing competition," 2020. [Online]. Available: https://f1tenth.org/
T. U. Braunschweig, "Carolo-cup," 2020. [Online]. Available: https://traxxas.com/
Traxxas, "Traxxas the fastest name in radio control," 2020. [Online]
Available: https://traxxas.com
M. Aeberhard, T. Kühbeck, B. Seidl, M. Friedl, J. Thomas, and O. Scheickl, "Automated Driving with ROS at BMW," 2015. [Online]. Available: https://roscon.ros.org/2015/presentations/ROSCon-Automated-Driving.pdf DOI: https://doi.org/10.36288/ROSCon2015-900192
BeagleBoard, "Beaglebone® blue," 2020. [Online]. Available: https://beagleboard.org/blue
R. P. Foundation, "Raspberry pi 3 model b+," 2020. [Online]. Available: https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
Nvidia, "Nvidia jetson nano," 2020. [Online]. Available: https://www.nvidia.com/en-us/autonomous-machines/embedded- systems/jetson
Aptiv, "Aptiv introduces next-gen adas platform for highly automated and electrified vehicles," 2021 [Online]. Available: https://www.aptiv.com/en/newsroom/article/aptiv-introduces-next-gen- adas-platform-for-highly-automated-and-electrified-vehicle
dSPACE, "Microautobox ii," 2020. [Online]. Available: https://www.dspace.com/en/inc/home/products/hw/micautob/microautobox2.cfm
HARDKERNEL, "Odroid xu 4," 2020. [Online]. Available: https://www.hardkernel.com/shop/odroid-xu4-special-price/
M. Keller, "Opensource board anyfcf7," 2020. [Online]. Available https://github.com/betaflight/betaflight/wiki/Board—ANYFCF7
Hackster.io, "Autonomous cars with robo hat mm1," 2019. [Online]. Available: https://www.hackster.io/wallarug/autonomous-cars-with- robo-hat-mm1-8d0e65
ROS.org, "What is ros?" 2020. [Online]. Available: https://wiki.ros.org/ROS/Introduction
T. A. Foundation, "Autoware.ai," 2020. [Online]. Available: https://www.autoware.ai/
Q. Zhang, Y. Wang, X. Zhang, L. Liu, X. Wu, W. Shi, and H. Zhong, "Openvdap: An open vehicular data analytics platform for cavs," in 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS), 2018, pp. 1310-1320. [Online] Available: https://doi.org/10.1109/ICDCS.2018.0013 DOI: https://doi.org/10.1109/ICDCS.2018.00131
Tas¸, F. Kuhnt, J. M. Zöllner, and C. Stiller, "Functional system architectures towards fully automated driving," in 2016 IEEE Intelligent Vehicles Symposium (IV), 2016, pp. 304-309. [Online] Available: https://doi.org/10.1109/IVS.2016.7535402 DOI: https://doi.org/10.1109/IVS.2016.7535402
N. J. van Eck and L. Waltman, "Software survey: Vosviewer, a computer program for bibliometric mapping," Scientometrics vol. 84 , no. 2, p. 523 - 538, 2010, cited by: 8463; All Open Access, Green Open Access, Hybrid Gold Open Access [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2- s2.0-77953711904&doi=10.1007%2fs11192-009-0146- DOI: https://doi.org/10.1007/s11192-009-0146-3
&partnerID=40&md5=77f9212dfdeda81adc0aafa9766aa55b
J. Mingers and L. Leydesdorff, "A review of theory and practice in scientometrics," European Journal of Operational Research, vol. 246, no. 1, pp. 1-19, 2015. [Online]. DOI: https://doi.org/10.1016/j.ejor.2015.04.002
Tas¸, S. Hörmann, B. Schäufele, and F. Kuhnt, "Automated vehicle system architecture with performance assessment," in 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), 2017, pp. 1-8. [Online]. Available: https://doi.org/10.1109/ITSC.2017.8317862 DOI: https://doi.org/10.1109/ITSC.2017.8317862
S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K. Lau, C. Oakley, M. Palatucci,
V. Pratt, P. Stang, S. Strohband, C. Dupont, L. E. Jendrossek, C. Koelen, C. Markey, C. Rummel, J. van Niek erk, E. Jensen, P. Alessandrini, G. Bradski,
B. Davies, S. Ettinger, A. Kaehler, A. Nefian, and P. Mahoney, "Stanley: The robot that won the darpa grand challenge," Journal of Field Robotics, vol. 23, pp. 661-692, 2006. DOI: https://doi.org/10.1002/rob.20147
M. Buehler, K. Iagnemma, and S. Singh, The DARPA urban challenge: autonomous vehicles in city traffic. Springer Science Business Media, 2009, vol. 56. DOI: https://doi.org/10.1007/978-3-642-03991-1
S. Kammel, J. Ziegler, B. Pitzer, M. Werling, T. Gindele, D. Jagzent, J. Schröder, M. Thuy, M. Goebl, F. von Hundelshausen, O. Pink, C. Frese, and C. Stiller, "Team annieway’s autonomous system for the 2007 darpa urban challenge," Journal of Field Robotics, vol. 25, pp. 615-639, 2008. DOI: https://doi.org/10.1002/rob.20252
Ozguner, Umit, Christoph Stiller, and Keith Redmill. "Systems for safety and autonomous behavior in cars: The DARPA grand challenge experience." Proceedings of the IEEE 95.2 (2007): 397-412. DOI: https://doi.org/10.1109/JPROC.2006.888394
E. U. R. Fund.
A. Geiger, M. Lauer, F. Moosmann, B. Ranft, H. Rapp, C. Stiller, and J. Ziegler, "Team annieway’s entry to the 2011 grand cooperative driving challenge," IEEE Transactions on Intelligent Transportation Systems, vol. 13, pp. 1008-1017, 2012. DOI: https://doi.org/10.1109/TITS.2012.2189882
J. Leonard, J. How, S. Teller, M. Berger, S. Campbell, G. Fiore, L. Fletcher, E. Frazzoli, A. Huang, S. Karaman, O. Koch, Y. Kuwata, D. Moore, E. Olson, S. Peters, J. Teo, R. Truax, M. Walter, D. Barrett, A. Epstein, K. Maheloni, K. Moyer, T. Jones, R. Buckley, M. Antone, R. Galejs, S. Krishnamurthy, and J. Williams, "A perception-driven autonomous urban vehicle," Journal of Field Robotics, vol. 25, pp. 727-774, 2008. DOI: https://doi.org/10.1002/rob.20262
A. Bacha, C. Bauman, R. Faruque, M. Fleming, C. Terwelp, C. Reinholtz, D. Hong, A. Wicks, T. Alberi, D. Anderson, S. Cacciola, P. Currier, A. Dalton, J. Farmer, J. Hurdus, S. Kimmel, P. King, A. Taylor, D. van Covern, and M. Webster, "Odin: Team victortango’s entry in the darpa urban challenge," Journal of Field Robotics, vol. 25, pp. 467-492, 2008. DOI: https://doi.org/10.1002/rob.20248
M. Montemerlo, J. Becker, S. Shat, H. Dahlkamp, D. Dolgov, S. Ettinger,
D. Haehnel, T. Hilden, G. Hoffmann, B. Huhnke, D. Johnston, S. Klumpp,D. Langer, A. Levandowski, J. Levinson, J. Marcil, D. Orenstein, J. Paefgen,
I. Penny, A. Petrovskaya, M. Pflueger, G. Stanek, D. Stavens, A. Vogt, and S. Thrun, "Junior: The stanford entry in the urban challenge," Journal of Field Robotics, vol. 25, pp. 569-597, 2008. DOI: https://doi.org/10.1002/rob.20258
C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. N Clark, J. Dolan, D. Duggins, T. Galatali, C. Geyer, M. Gittleman, S. Harbaugh, M. Hebert, T. M. Howard, S. Kolski, A. Kelly, M. Likhachev, M. McNaughton,
N. Miller, K. Peterson, B. Pilnick, R. Rajkumar, P. Rybski, B. Salesky, Y.-
W. Seo, S. Singh, J. Snider, A. Stentz, W. R. Whittaker, Z. Wolkowicki,
J. Ziglar, H. Bae, T. Brown, D. Demitrish, B. Litkouhi, J. Nickolaou, V. Sadekar, W. Zhang, J. Struble, M. Taylor, M. Darms, and D. Ferguson, Autonomous Driving in Urban Environments: Boss and the Urban Challenge. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 1-59. [Online].
Available: https://doi.org/10.1007/978-3-642-03991-1_1 DOI: https://doi.org/10.1007/978-3-642-03991-1_1
M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
A. Y. Ng et al., "Ros: an open-source robot operating system," in ICRA workshop on open source software, vol. 3, no. 3.2. Kobe, Japan, 2009, p. 5.
A. Broggi, M. Bertozzi, and A. Fascioli, "Argo and the millemiglia in automatico tour," IEEE Intelligent Systems and their Applications, vol. 14, no. 1, pp. 55-64, 1999. DOI: https://doi.org/10.1109/5254.747906
A. Broggi, M. Buzzoni, S. Debattisti, P. Grisleri, M. C. Laghi, P. Medici, and P. Versari, "Extensive tests of autonomous driving technologies," IEEE Transactions on Intelligent Transportation Systems, vol. 14, no. 3, pp. 1403-1415, 2013. [Online]. Available: https://doi.org/10.1109/TITS.2013.2262331 DOI: https://doi.org/10.1109/TITS.2013.2262331
H. Hirschmüller, F. Scholten, and G. Hirzinger, "Stereo vision based reconstruction of huge urban areas from an airborne pushbroom camera (hrsc)," W. G. Kropatsch, R. Sablatnig, and A. Hanbury, Eds. Springer Berlin Heidelberg, 2005, pp. 58-66. DOI: https://doi.org/10.1007/11550518_8
E. D. Dickmanns, B. Mysliwetz, and T. Christians, "An integrated spatiotemporal approach to automatic visual guidance of autonomous vehicles the authors are with the fakultat fgr luft-und raumfahrttechnik," p. 1273. DOI: https://doi.org/10.1109/21.61200
J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, "Towards fully autonomous driving: Systems and algorithms," in 2011 IEEE Intelligent Vehicles Symposium (IV), 2011, pp. 163-168. DOI: https://doi.org/10.1109/IVS.2011.5940562
M. Bertozzi, A. Broggi, A. Coati, and R. I. Fedriga, "A 13,000 km intercontinental trip with driverless vehicles: The viac experiment," IEEE Intelligent Transportation Systems Magazine, vol. 5, pp. 28-41, 2013. DOI: https://doi.org/10.1109/MITS.2012.2225651
K. Chu, M. Lee, and M. Sunwoo, "Local path planning for offroad autonomous driving with avoidance of static obstacles," IEEE Transactions on Intelligent Transportation Systems, vol. 13, pp. 1599-1616, 2012. DOI: https://doi.org/10.1109/TITS.2012.2198214
K. Jo, J. Kim, D. Kim, C. Jang, and M. Sunwoo, "Development of autonomous vehicle-part i: Distributed system architecture and development process," IEEE Transactions on Industrial Electronics, vol. 61, no. 12, pp. 7131-7140, 2014. [Online]. Available: https://doi.org/10.1109/TIE.2014.2321342 DOI: https://doi.org/10.1109/TIE.2014.2321342
M. Sedighi, "Application of word co-occurrence analysis method in mapping of the scientific fields (case study: the field of informetrics)," Library Review, vol. 65, no. 1-2, p. 52 - 64, 2016, cited by: 86. [Online]. DOI: https://doi.org/10.1108/LR-07-2015-0075
M. Fukui, Y. Ishiwata, T. Ohkawa, and M. Sugaya, "Iot edge server ros node allocation method for multi-slam on many-core," in 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops), 2022, pp. 421-426. [Online]. Available: https://doi.org/10.1109/PerComWorkshops53856.2022.9767431 DOI: https://doi.org/10.1109/PerComWorkshops53856.2022.9767431
S. Liu, J. Tang, C. Wang, Q. Wang, and J.-L. Gaudiot, "A unified cloud platform for autonomous driving," Computer, vol. 50, no. 12, pp. 42-49, 2017. DOI: https://doi.org/10.1109/MC.2017.4451224
K. Bilal, O. Khalid, A. Erbad, and S. U. Khan, "Potentials, trends, and prospects in edge technologies: Fog, cloudlet, mobile edge, and micro data centers," Computer Networks, vol. 130, pp. 94-120, 2018 [Online].
Available: https://doi.org/10.1016/j.comnet.2017.10.002 DOI: https://doi.org/10.1016/j.comnet.2017.10.002
E. Shang, B. Dai, Y. Nie, Q. Zhu, L. Xiao, and D. Zhao, "A novel three-layer-architecture based planning method and its applications for multi-heterogeneous autonomous land vehicles," in 2022 41st Chinese Control Conference (CCC), 2022, pp. 3838-3845. [Online]. Available: https://doi.org/10.23919/CCC55666.2022.9902730 DOI: https://doi.org/10.23919/CCC55666.2022.9902730
A. Chattopadhyay, K.-Y. Lam, and Y. Tavva, "Autonomous vehicle: Secu- rity by design," IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 11, pp. 7015-7029, 2021. DOI: https://doi.org/10.1109/TITS.2020.3000797
C. Kim, Y. Jung, and S. Lee, "Fmcw lidar system to reduce hardware complexity and post-processing techniques to improve dis- tance resolution," Sensors, vol. 20, no. 22, 2020. [Online]. Available: https://www.mdpi.com/1424-8220/20/22/6676 DOI: https://doi.org/10.3390/s20226676
A. S. Bhadoriya, V. Vegamoor, and S. Rathinam, "Vehicle detection and tracking using thermal cameras in adverse visibility conditions," Sensors, vol. 22, no. 12, 2022. [Online]. Available: https://www.mdpi.com/1424- 8220/22/12/4567 DOI: https://doi.org/10.3390/s22124567
J. Li, H. Cheng, H. Guo, and S. Qiu, "Survey on Artificial Intelligence for Vehicles," Automotive Innovation, vol. 1, no. 1, pp. 2-14, 2018 [Online]. Available: https://doi.org/10.1007/s42154-018-0009-9 DOI: https://doi.org/10.1007/s42154-018-0009-9