Molecular Detection and Resistance Profile of Pseudomonas aeruginosa and Escherichia coli Isolated from Pediatric Patients in Selected Hospitals in Sokoto Metropolis
Main Article Content
Abstract
This study investigated the molecular detection and antimicrobial resistance profiles of Escherichia coli and Pseudomonas aeruginosa isolated from pediatric patients in two selected hospitals in Sokoto metropolis, Nigeria. A total of 193 blood samples were collected from children aged 2–12 years and analyzed using standard microbiological, biochemical, and molecular techniques. Of these, 80 samples (41.45%) yielded positive microbial growth, with E. coli and P. aeruginosa each detected in 7.5% (n = 15) of total isolates. Morphological identification was confirmed using selective media, and species identity was validated by PCR amplification of uidA (503 bp), oprL (249 bp), and 16S rRNA genes. Antimicrobial susceptibility testing showed that E. coli isolates exhibited complete resistance to ampicillin (100%), moderate resistance to ciprofloxacin (66.7%) and kanamycin (66.7%), but were fully susceptible to tetracycline and ceftazidime (0% resistance). P. aeruginosa displayed variable resistance patterns, with a maximum multiple antibiotic resistance (MAR) index of 0.7, suggesting prior exposure to high-risk antibiotic environments. These findings reveal a considerable burden of multidrug-resistant bloodstream pathogens among pediatric patients in Sokoto, underscoring the urgent need for routine molecular surveillance, strict antibiotic stewardship, and targeted infection control strategies to safeguard child health in the region.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Kabiru Mohammed, Usmanu Danfodiyo University, Sokoto, Sokoto State.
Department of Medical Microbiology,
School of Medical Lab Science, College of Health Science.
Maryam Abdullahi, Federal College of Education, Gidan Madi, Sokoto State.
School Clinic, Laboratory Unit.
Ado, A., Chonoko, U., G., and Badaru, M. (2019). Antibacterial Activity of Eucalyptus globulus on Urinary Tract Clinical Bacterial Isolates, FUDMA Journal of Sciences (FJS), 3(1): 100 -103 ISSN online: 2616-1370
Ahmed, A., Islam, M. T., Rahman, M., and Hossain, M. T. (2021). Molecular identification of pathogenic bacteria using PCR and its application in clinical microbiology. Microbial Pathogenesis. 152, 104605. https://doi.org/10.1016/j.micpath.2021.104605 DOI: https://doi.org/10.1016/j.micpath.2020.104605
Akinyemi, A. (2024). High incidence of carbapenemase-producing Pseudomonas aeruginosa clinical isolates from Lagos, Nigeria. Journal of Clinical Microbiology. pmc.ncbi.nlm.nih.gov 1-10
Aliyu, S., Bello, M., Haruna, M., and Ibrahim, A. (2023). Prevalence and antibiotic susceptibility of multidrug-resistant Gram-negative bacteria in pediatric patients in Northwestern Nigeria. African Journal of Microbiology Research, 17(4), 112-120. https://doi.org/10.5897/AJMR2023.9854
Al-Orphaly, M. N., et al. (2021). Epidemiology of multidrug-resistant Pseudomonas aeruginosa in the Middle East and North Africa region. Microbial Pathogenesis, e.g., 0–44 % fluoroquinolone resistance, ≤6 % aminoglycoside resistance in some countries. pmc.ncbi.nlm.nih.gov 1-10 DOI: https://doi.org/10.1128/mSphere.00202-21
Arora, S., Mishra, P., and Singh, P. K. (2023). Advances in molecular techniques for bacterial detection: From PCR to CRISPR-based assays. Frontiers in Microbiology, 14, 122345. https://doi.org/10.3389/fmicb.2023.122345 1-15
Ayandiran, T. O., Falgenhauer, L., Schmiedel, J., Chakrabort, T., Ayeni, F. A. (2018). High resistance to tetracycline and ciprofloxacin in bacteria isolated from poultry farms in Ibadan, Nigeria. J. of Sci. pubmed.ncbi.nlm.nih.gov 1-7 DOI: https://doi.org/10.3855/jidc.9862
Clermont, O., Christenson, J. K., Denamur, E., and Gordon, D. M. (2019). The Clermont E. coli phylo-typing method revisited: Improvement of specificity and detection of new phylo-groups. Environmental Microbiology Reports, 11(5), 578–581. https://doi.org/10.1111/1758-2229.12748 DOI: https://doi.org/10.1111/1758-2229.12748
Clinical and Laboratory Standards Institute (CLSI). (2022). Performance Standards for Antimicrobial Susceptibility Testing; 32nd Edition. Clinical and Laboratory Standards Institute (CLSI) Document M100-S32. https://doi.org/10.1093/clinchem/hvaa220 DOI: https://doi.org/10.1093/clinchem/hvaa220
Croxen, M. A., Law, R. J., Scholz, R., Keeney, K. M., Wlodarska, M., and Finlay, B. B. (2013). Recent advances in understanding enteric pathogenic Escherichia coli. Clinical Microbiology Reviews, 26(4): 822-880. https://doi.org/10.1128/CMR.00022-13 DOI: https://doi.org/10.1128/CMR.00022-13
De Vos, D., Pirnay, J. P., and Bilocq, F. (2022). Molecular characterization of Pseudomonas aeruginosa using oprL gene-based PCR detection. Journal of Clinical Microbiology, 60(4): 1-15 e01432-21. https://doi.org/10.1128/jcm.01432-21
Eke, U. A., Ibe, I. J., Okon, K. O., and Nwosu, C. I. (2023). Molecular epidemiology of multidrug-resistant Gram-negative bacteria in pediatric infections: A Nigerian hospital-based study. Frontiers in Microbiology, 14: 1-12 104567. https://doi.org/10.3389/fmicb.2023.104567
García-Castillo, M., Rodríguez-Martínez, J. M., and Martínez, J. L. (2022). Efflux pump-mediated resistance in Pseudomonas aeruginosa and therapeutic approaches. International Journal of Antimicrobial Agents, 59(2): 1-10 106357. https://doi.org/10.1016/j.ijantimicag.2022.106357
Garga, M. A., Ado, A., Mzungu, I., Suleiman, A. K., and Abdullahi, H. (2024). Prevalence, Phenotypic Characterization and Antibiogram of Uropathogenic Escherichia coli among Patients attending a tertiary Institution Teaching Hospital in Katsina Metropolis, Nigeria. Journal of Applied and Environmental Management. 28(12): 1-10 print ISSN: 2659-1502 DOI: https://doi.org/10.4314/jasem.v28i12.24
Gomi, R., Matsui, Y., Matsuo, T., Yoneda, M., and Kansal, R. (2017). Role of Escherichia coli as an indicator of microbial water quality in rivers and its correlation with pathogenic bacteria. Water Research, 119, 266–273. https://doi.org/10.1016/j.watres.2017.04.014 DOI: https://doi.org/10.1016/j.watres.2017.04.014
Ibrahim, H. A., Bello, M. A., & Sani, M. (2023). Antibiotic resistance patterns of Escherichia coli isolated from clinical specimens in Northwestern Nigeria. African Journal of Clinical Microbiology, 16(2), 101–109. https://doi.org/10.4314/ajcm.v16i2.5
Iseghohi, F., Igwe, J. C., Galadima, M., Kuta, A. F., Abdullahi, A. M., and Chukwunwejim, C. R. (2020). Prevalence of Extended Spectrum Beta-Lactamases (ESBLs)-producing Escherichia coli Isolated from UTI Patients Attending Some Selected Hospitals in Minna, Nigeria, Nigeria Journal of Biotechnology, 37(2): 56-73 DOI: DOI: https://doi.org/10.4314/njb.v37i2.6
Jia, H., Wang, H., Fang, W., and Yang, Q. (2017). Global emergence of multidrug-resistant Escherichia coli: A systematic review. Microbial Drug Resistance, 23(3), 261-272. https://doi.org/10.1089/mdr.2016.0214
Khan, M. A., Alenzi, F. Q., and Al-Shehri, M. (2022). Cetrimide agar: A cornerstone in Pseudomonas aeruginosa identification. Annals of Clinical Microbiology and Antimicrobials, 21(1):1-12. https://doi.org/10.1186/s12941-022-00504-8 DOI: https://doi.org/10.1186/s12941-022-00504-8
Klockgether, J., and Tümmler, B. (2017). Recent advances in understanding Pseudomonas aeruginosa as a pathogen. F1000Research, 6, 1261. https://doi.org/10.12688/f1000research.10506.1 DOI: https://doi.org/10.12688/f1000research.10506.1
Labi, A. K., Obeng-Nkrumah, N., Addison, N. O., and Donkor, E. S. (2021). Multidrug-resistant Gram-negative bacterial infections in a pediatric hospital in Ghana. BMC Infectious Diseases, 21(1):1-567. https://doi.org/10.1186/s12879-021-06118-0
Lerminiaux, N. A., and Cameron, A. D. S. (2019). Horizontal transfer of antibiotic resistance genes in clinical environments. Canadian Journal of Microbiology, 65(1), 34-44. https://doi.org/10.1139/cjm-2018-0275 DOI: https://doi.org/10.1139/cjm-2018-0275
Li, H., Zhang, J., Zheng, X., Liu, Y., and Wang, C. (2022). Efflux pumps and resistance mechanisms in Pseudomonas aeruginosa: A review. Frontiers in Microbiology, 13, 987456. https://doi.org/10.3389/fmicb.2022.987456 1-7
Merza, N. S., and Jubrael, M. S. J. (2015). Phylogenetic Grouping of Uropathogenic Escherichia coli using different Molecular Typing Methods in Kurdistan Region, Iraq, International Journal of Chemical and Biomolecular Sciences, 1(4): 284-291
Muggeo, A., Li, H., Bryant, J. E., and Morosini, M. I. (2021). The emergence of carbapenem-resistant Enterobacteriaceae in pediatric patients. Clinical Infectious Diseases, 72(8), 1294-1302. https://doi.org/10.1093/cid/ciaa790 DOI: https://doi.org/10.1093/cid/ciaa790
Murray, P. R., Rosenthal, K. S., and Pfaller, M. A. (2021). Medical Microbiology (9th ed.). Elsevier. https://doi.org/10.1016/C2018-0-04037-9
Odetoyin, B. W., Akinduti, P. A., and Oyelade, A. A. (2020). High prevalence of ESBL-producing Escherichia coli in Nigerian hospital settings. Journal of Infection and Public Health, 13(10), 1506-1513. https://doi.org/10.1016/j.jiph.2020.06.015 DOI: https://doi.org/10.1016/j.jiph.2020.06.015
Oduyebo, O., Okeke, I. N., & Bakare, R. A. (2022). Surveillance of antimicrobial resistance in West African hospitals: Challenges and insights. Journal of Infection in Developing Countries, 16(1), 23–30.
Olayemi, F. O., Ajayi, A. O., & Abdullahi, A. (2022). Hospital-acquired infections and antimicrobial resistance in Nigerian healthcare facilities: A review of current trends. Nigerian Journal of Microbiology, 36(1), 58–67.
Oliveira, A., Lobo, R., Sousa, R., and Teixeira, P. (2023). PCR-based detection of foodborne pathogens: A review of current methods and future perspectives. Trends in Food Science and Technology, 134, 112–125. https://doi.org/10.1016/j.tifs.2023.02.004 DOI: https://doi.org/10.1016/j.tifs.2023.02.004
Olonitola, O. S., Abdu, N., and Adekanbi, A. O. (2022). Molecular characterization of multidrug-resistant Gram-negative bacteria from hospitalized patients in Nigeria. Journal of Medical Microbiology, 71(7), 001487. https://doi.org/10.1099/jmm.0.001487 1-7 DOI: https://doi.org/10.1099/jmm.0.001487
Pang, Z., Raudonis, R., Glick, B. R., Lin, T. J., and Cheng, Z. (2019). Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnology Advances, 37(1), 177-192. https://doi.org/10.1016/j.biotechadv.2018.11.006
Pang, Z., Raudonis, R., Glick, B. R., Lin, T. J., and Cheng, Z. (2019). Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnology Advances, 37(1), 177-192. https://doi.org/10.1016/j.biotechadv.2018.11.006 DOI: https://doi.org/10.1016/j.biotechadv.2018.11.013
Reyes, N. D., Khan, S. A., & Yusuf, M. E. (2021). Prevalence and resistance mechanisms of Pseudomonas aeruginosa in sub-Saharan hospitals. Journal of Global Infectious Diseases, 13(4), 173–180. https://doi.org/10.4103/jgid.jgid_95_21
Shinkafi, L., A., Yarima, B., M., Deeni, Y., Y., and Danjuma, L. (2023). Molecular Detection of E. coli O157:H7 Isolated from Infants Diarrheal Stools and Its Sensitivity to Mangifera indica (Mango) and Bosweilia dalzeilii (Hano) Extracts. International Journal of Microbiology and Biotechnology, 8(2): 30-36. doi: 10.11648/j.ijmb.20230802.11 DOI: https://doi.org/10.11648/j.ijmb.20230802.11
Tacconelli, E., Carrara, E., Savoldi, A., et al. (2023). Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet Infectious Diseases, 23(3), e101-e111. https://doi.org/10.1016/S1473-3099(22)00801-4
Tamma, P. D., Aitken, S. L., Bonomo, R. A., et al. (2021). Infectious diseases society of America guidance on the treatment of antimicrobial-resistant Gram-negative infections. Clinical Infectious Diseases, 72(12), e169-e183. https://doi.org/10.1093/cid/ciaa1478 DOI: https://doi.org/10.1093/cid/ciaa1478
World Health Organization. (2023). Global priority list of antibiotic-resistant bacteria. Retrieved from https://www.who.int/publications/i/item/WHO-EMP-IAU-2017.12
Yusuf, A. B., Haruna, R. M., & Ahmed, S. O. (2023). Comparative analysis of bacterial isolates in tertiary and secondary hospitals in Northern Nigeria. West African Medical Journal, 40(1), 22–29.