A Review on Biogas Potentials from Maize Cob under Varying Pretreatment Temperatures
“crossref”/

Main Article Content

Aliyu Buba Ardo 
Mohammed Abubakar Clarkson 

Abstract

Maize cob, a lignocellulosic agricultural residue, holds great promise as a feedstock for biogas production. However, its structural complexity necessitates pretreatment to enhance biodegradability and methane yield. This review explores the impact of varying pretreatment temperatures on biogas potential, focusing on lignocellulosic breakdown, microbial digestibility, and process efficiency. An analysis of some studies provides insights into optimal pretreatment temperatures, associated mechanisms, and challenges in scaling up for industrial applications. Pretreatment significantly influences methane yield by improving substrate hydrolysis rates. Studies report a 50-100% increase in biogas production following optimal thermal pretreatment. It was found that inadequate lignin removal and prolonged process duration are associate with both LTP and MTP. However, HTP offers higher accessibility to biomass due to effective deconstruction of cellulose-hemicellulose-lignin complex with high potential for scale-up. However, these advantages are associated with adverse counter-productive processes such as excess inhibitory product generation and high energy demand. For, the HTP to be adaptive, these processes must balance.

Article Details

Ardo, A. B., & Clarkson, M. A. (2025). A Review on Biogas Potentials from Maize Cob under Varying Pretreatment Temperatures. African Journal of Environmental Sciences and Renewable Energy, 18(1), 51-58. https://doi.org/10.62154/ajesre.2025.018.010599
Articles

Copyright (c) 2025 Aliyu Buba Ardo, Mohammed Abubakar Clarkson (Author)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Aliyu Buba Ardo, Federal Polytechnic Bali, P. M. B. 05 Bali, Taraba State, Nigeria.

Department of Agricultural & Bio-Environmental Engineering,

School of Engineering Technology, Federal Polytechnic Bali, P. M. B. 05 Bali, Taraba State, Nigeria.

Mohammed Abubakar Clarkson, Federal Polytechnic Bali, P. M. B. 05 Bali, Taraba State, Nigeria.

Department of Agricultural & Bio-Environmental Engineering,

School of Engineering Technology, Federal Polytechnic Bali, P. M. B. 05 Bali, Taraba State, Nigeria.

Angelidaki, I., Ahring, B. K., & Ellegaard, L. (2009). Biogas production: Processes and technologies. Biotechnology Advances, 27(6), 731-736.

Chen, H., Liu, J., & Zhao, L. (2020). Advances in moderate-temperature pretreatment of lignocellulosic biomass for biofuels production. Bioresource Technology, 315, 123874. https://doi.org/10.1016/j.biortech.2020.123874

Chen, H., Liu, L., & Deng, L. (2007). Effect of pretreatment on biogas production from maize cob. Bioresource Technology, 99(4), 763-770.

Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100(1), 10-18.

https://doi.org/10.1016/j.biortech.2008.05.027 DOI: https://doi.org/10.1016/j.biortech.2008.05.027

Jørgensen, H. (2009). Pretreatment of lignocellulosic biomass for bioethanol production. Springer Science Reviews, 24(4), 52-57.

Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research, 48(8), 3713-3729.

https://doi.org/10.1021/ie801542g DOI: https://doi.org/10.1021/ie801542g

Li, H., Wu, Y., & Gao, J. (2023). Advances in sugar retention during pretreatment of lignocellulosic biomass. Biotechnology Advances, 62, 108071. https://doi.org/10.1016/j.biotechadv.2023.108071

https://doi.org/10.1016/j.biotechadv.2022.108071 DOI: https://doi.org/10.1016/j.biotechadv.2022.108071

Liu, Z., Huang, C., & Zhao, X. (2021). Autohydrolysis pretreatment of lignocellulosic biomass: Mechanism, advances, and perspectives. Renewable Energy, 170, 1035-1048. https://doi.org/10.1016/j.renene.2021.02.032

https://doi.org/10.1016/j.renene.2021.02.032 DOI: https://doi.org/10.1016/j.renene.2021.02.032

Mosier, N., Wyman, C., & Dale, B. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6), 673-686.

https://doi.org/10.1016/j.biortech.2004.06.025

Mosier, N., Wyman, C., & Dale, B. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6), 673-686.

https://doi.org/10.1016/j.biortech.2004.06.025 DOI: https://doi.org/10.1016/j.biortech.2004.06.025

Mussatto, S. I., Fernandes, M., Milagres, A. M. F., & Roberto, I. C. (2010). Effect of hemicellulose and lignin on enzymatic hydrolysis of cellulose from brewer's spent grain. Enzyme and Microbial Technology, 46(3-4), 185-191. https://doi.org/10.1016/j.enzmictec.2009.10.016

https://doi.org/10.1016/j.enzmictec.2009.10.016 DOI: https://doi.org/10.1016/j.enzmictec.2009.10.016

Palmowski, L., & Müller, J. (2003). Influence of the size reduction of organic waste on their anaerobic digestion. Water Science and Technology, 48(4), 145-153.

Saha, B. C., & Cotta, M. A. (2008). Lignocellulose biodegradation and applications in biotechnology. Applied Microbiology and Biotechnology, 81(1), 1-17.

Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technology, 83(1), 1-11.

https://doi.org/10.1016/S0960-8524(01)00212-7 DOI: https://doi.org/10.1016/S0960-8524(01)00212-7

Sun, Y., Wang, C., & Liu, Z. (2021). Limitations of moderate-temperature pretreatment for biogas production. Renewable Energy, 163, 2057-2065. https://doi.org/10.1016/j.renene.2021.05.060

https://doi.org/10.1016/j.renene.2021.05.060 DOI: https://doi.org/10.1016/j.renene.2021.05.060

Taherzadeh, M. J., & Karimi, K. (2008). Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. International Journal of Molecular Sciences, 9(9), 1621-1651.

https://doi.org/10.3390/ijms9091621 DOI: https://doi.org/10.3390/ijms9091621

Wang, S., Li, F., & Xu, Q. (2022). Moderate-temperature pretreatment of agricultural residues for biogas production: A review. Journal of Cleaner Production, 340, 130710. https://doi.org/10.1016/j.jclepro.2022.130710

https://doi.org/10.1016/j.jclepro.2022.130710 DOI: https://doi.org/10.1016/j.jclepro.2022.130710

Weiland, P. (2010). Biogas production: Current state and perspectives. Applied Microbiology and Biotechnology, 85(4), 849-860. https://doi.org/10.1007/s00253-009-2246-7

https://doi.org/10.1007/s00253-009-2246-7 DOI: https://doi.org/10.1007/s00253-009-2246-7

Xiao, L., Zhang, Y., & Chen, W. (2021). Effectiveness of moderate-temperature hydrothermal pretreatment on various lignocellulosic biomass. Industrial Crops and Products, 159, 113091. https://doi.org/10.1016/j.indcrop.2021.113091

Zhao, J., Wang, Q., & Sun, X. (2020). Comparative study of hydrothermal pretreatment strategies for biogas enhancement. Renewable and Sustainable Energy Reviews, 134, 110394. https://doi.org/10.1016/j.rser.2020.110394

https://doi.org/10.1016/j.rser.2020.110394 DOI: https://doi.org/10.1016/j.rser.2020.110394

Zheng, Y., Zhao, J., & Xu, F. (2014). Pretreatment of lignocellulosic biomass for enhanced biogas production: A review. Renewable and Sustainable Energy Reviews, 15(8), 2742-2751.