Sustainable Synthesis of Carbon Nanotubes from Potatoes Peel for Oil Spill Remediation
Main Article Content
Abstract
The environmental challenge posed by oil spills necessitates the development of sustainable remediation strategies. Traditional methods often rely on hazardous chemicals that threaten ecosystems and human health, underscoring the need for alternative solutions. This research aimed to synthesize carbon nanotubes (CNTs) from potato peels using a controlled pyrolysis process and evaluate their potential as eco-friendly adsorbents for crude oil remediation. Potato peels, were carbonized at 300°C. Results revealed that the CNTs exhibited a maximum adsorption capacity of 9538.17 mg/g at 6.0 g dosage, achieving a removal efficiency of 97.997%. FTIR analysis identified functional groups such as hydroxyl (-OH) and carboxyl (-COOH) at the range of 15000 – 25000 cm-1 that enhance adsorption, Potato peels' UV-Vis spectra reveal a π-π* transition in carbon-based materials, and a minimal impurity after 220 nm, indicating high purity of CNTs synthesis and SEM confirmed the formation of a porous CNT network. The CNTs performed optimally at pH 6.8, with 95.14% removal efficiency, and at lower temperatures, with 96.77% removal at 20°C. Optimal adsorption was observed at a contact time of 90 minutes, achieving a crude oil removal efficiency of 95.997%. Analysis using Langmuir, Freundlich and Temkin isotherm models revealed high R² values across all the three models suggesting complex interactions where both monolayer and multilayer formations occur alongside significant intermolecular forces affecting binding energies which demonstrated the potentials of potato peel-derived CNTs as sustainable, cost-effective adsorbents, offering an eco-friendly approach to oil spill remediation Future research should be focused on optimizing the synthesis process, assess long-term environmental impacts, and conduct cost-benefit analyses.
Article Details
Copyright (c) 2025 Afolabi Adenike Mistura, Yahaya Mansur Ibrahim, Jamilu Usman (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Afolabi Adenike Mistura, Sokoto State University, Sokoto, Nigeria.
Department of Pure and Industrial Chemistry,
Sokoto State University, Sokoto, Nigeria.
Yahaya Mansur Ibrahim, Sokoto State University, Sokoto, Nigeria.
Department of Pure and Industrial Chemistry,
Sokoto State University, Sokoto, Nigeria.
Jamilu Usman, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
Interdisciplinary Research Center for Membranes & Water Security,
King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
Beni, A. A., and Jabbari, H. (2022). Nanomaterials for environmental applications. Results in Engineering, 15, 100467. https://doi.org/10.1016/j.rineng.2022.100467
https://doi.org/10.1016/j.rineng.2022.100467
Saraswat, P., Singh, S., Prasad, M., Misra, R., Rajput, V. D., and Ranjan, R. (2023). Applications of bio-based nanomaterials in environment and agriculture: A review on recent progresses. Hybrid Advances, 4, 100097. https://doi.org/10.1016/j.hybadv.2023.100097
https://doi.org/10.1016/j.hybadv.2023.100097
Ali, A. S. (2020). Application of nanomaterials in environmental improvement. In IntechOpen eBooks. https://doi.org/10.5772/intechopen.91438
https://doi.org/10.5772/intechopen.91438
Del Prado-Audelo, M. L., Kerdan, I. G., Escutia-Guadarrama, L., Reyna-González, J. M., Magaña, J. J., and Leyva-Gómez, G. (2021). Nanoremediation: nanomaterials and nanotechnologies for environmental cleanup. Frontiers in Environmental Science, 9. https://doi.org/10.3389/fenvs.2021.793765
https://doi.org/10.3389/fenvs.2021.793765
Ganesh, K. N., Zhang, D., Miller, S. J., Rossen, K., Chirik, P. J., Kozlowski, M. C., Zimmerman, J. B., Brooks, B. W., Savage, P. E., Allen, D. T., and Voutchkova-Kostal, A. M. (2021). Green Chemistry: a framework for a sustainable future. Environmental Science and Technology Letters, 8(7), 487-491. https://doi.org/10.1021/acs.estlett.1c00434
https://doi.org/10.1021/acs.estlett.1c00434
Mishra, S., Chauhan, G., Verma, S., and Singh, U. (2022). The emergence of nanotechnology in mitigating petroleum oil spills. Marine Pollution Bulletin, 178, 113609. https://doi.org/10.1016/j.marpolbul.2022.113609
https://doi.org/10.1016/j.marpolbul.2022.113609
Singh, H., Bhardwaj, N., Arya, S. K., and Khatri, M. (2020). Environmental impacts of oil spills and their remediation by magnetic nanomaterials. Environmental Nanotechnology Monitoring and Management, 14, 100305. https://doi.org/10.1016/j.enmm.2020.100305
https://doi.org/10.1016/j.enmm.2020.100305
Bi, H., Mulligan, C. N., Lee, K., Zhang, B., Chen, Z., and An, C. (2024). Nanotechnology for oil spill response and cleanup in coastal regions. Environmental Science Nano. https://doi.org/10.1039/d4en00954a
https://doi.org/10.1039/D4EN00954A
Pete, A. J., Bharti, B., and Benton, M. G. (2021). Nano-enhanced Bioremediation for oil spills: a review. ACS ESandT Engineering, 1(6), 928-946. https://doi.org/10.1021/acsestengg.0c00217
https://doi.org/10.1021/acsestengg.0c00217
Abdullah, M. M. S., Al-Lohedan, H. A., and Faqihi, N. A. (2023). Surface-modified magnetite nanoparticles using polyethylene terephthalate waste derivatives for oil spill remediation. RSC Advances, 13(38), 26366-26374. https://doi.org/10.1039/d3ra04457b
https://doi.org/10.1039/D3RA04457B
Zamparas, M., Tzivras, D., Dracopoulos, V., and Ioannides, T. (2020). Application of sorbents for oil spill cleanup Focusing on Natural-Based Modified Materials: A review. Molecules, 25(19), 4522. https://doi.org/10.3390/molecules25194522
https://doi.org/10.3390/molecules25194522
Mahmoud, M. A. (2023). A feasibility study for recycling biodegradable adsorbent in the oil spill cleanup from seawater. Desalination and Water Treatment, 281, 122-129. https://doi.org/10.5004/dwt.2023.29121
https://doi.org/10.5004/dwt.2023.29121
Admin. (2022, August 18). Principle of Spectrophotometer and its Applications| Chemistry| Byjus. BYJUS. https://byjus.com/chemistry/spectrophotometer-principle/
Alafogianni, P., Dassios, K., Farmaki, S., Antiohos, S., Matikas, T., and Barkoula, N. (2016). On the efficiency of UV-vis spectroscopy in assessing the dispersion quality in sonicated aqueous suspensions of carbon nanotubes. Colloids and Surfaces a Physicochemical and Engineering Aspects, 495, 118-124. https://doi.org/10.1016/j.colsurfa.2016.01.053
https://doi.org/10.1016/j.colsurfa.2016.01.053
Sarode, V. B., Patil, R. D., and Chaudhari, G. E. (2023). Characterization of functionalized multi-walled carbon nanotubes. Materials Today Proceedings. https://doi.org/10.1016/j.matpr.2023.06.288
https://doi.org/10.1016/j.matpr.2023.06.288
Malvern Panalytical. (2001, February 15). Malvern PAnalytical | Analytical instrumentation. https://www.malvernpanalytical.com/
Ouyang, D., Lei, X., and Zheng, H. (2023). Recent advances in Biomass-Based materials for oil spill cleanup. Nanomaterials, 13(3), 620. https://doi.org/10.3390/nano13030620
https://doi.org/10.3390/nano13030620
Kumar, N., Amritphale, S. S., Matthews, J. C., and Lynam, J. G. (2021). Oil spill cleanup using industrial and agricultural waste-based magnetic silica sorbent material: a green approach. Green Chemistry Letters and Reviews, 14(4), 634-641. https://doi.org/10.1080/17518253.2021.1993349
https://doi.org/10.1080/17518253.2021.1993349
Mahmoud, M. A., Tayeb, A. M., Daher, A. M., Bakather, O. Y., Hassan, M., Eldoma, M. A., Elsheikh, Y. A., and Abouatiaa, A. F. (2022). Adsorption study of oil spill cleanup from sea water using natural sorbent. Chemical Data Collections, 41, 100896. https://doi.org/10.1016/j.cdc.2022.100896
https://doi.org/10.1016/j.cdc.2022.100896
Doshi, B., Sillanpää, M., and Kalliola, S. (2018). A review of bio-based materials for oil spill treatment. Water Research, 135, 262-277. https://doi.org/10.1016/j.watres.2018.02.034
https://doi.org/10.1016/j.watres.2018.02.034
Imran H. and Mahmud T. (2022). Carbon nanotubes from agricultural wastes: Effective environmental adsorbent. Egyptian Journal of Chemistry, 0(0), 0. https://doi.org/10.21608/ejchem.2022.123337.5511
https://doi.org/10.21608/ejchem.2022.123337.5511
Ibrahim, N. M. Y., and Adamu, N. H. (2024). Synthesis of Activated Charcoal from Coconut Shell for the Removal of Crude Oil Spill. Deleted Journal, 15(1), 72-98. https://doi.org/10.62154/ca3axa83
https://doi.org/10.62154/ca3axa83
CN, K., and Selvan, A. M., V. (2020). Synthesis and characterization of carbon nanotubes from engine soot and its application as an additive in Schizochytrium biodiesel fuelled DICI engine. Energy Reports, 6, 2126-2139. https://doi.org/10.1016/j.egyr.2020.08.003
https://doi.org/10.1016/j.egyr.2020.08.003
Abdullah, T. A., Juzsakova, T., Hafad, S. A., Rasheed, R. T., Al-Jammal, N., Mallah, M. A., Salman, A. D., Le, P. C., Domokos, E., and Aldulaimi, M. (2021). Functionalized multi-walled carbon nanotubes for oil spill cleanup from water. Clean Technologies and Environmental Policy, 24(2), 519-541. https://doi.org/10.1007/s10098-021-02104-0
https://doi.org/10.1007/s10098-021-02104-0
Sehrawat, M., Singh, V., Rani, M., Kalra, C., Bharadwaj, S., Rani, R., Bisht, A., and Singh, B. P. (2024). Nano-welded carbon nanotube sponges for efficient oil spill remediation. Journal of Cleaner Production, 467, 142841. https://doi.org/10.1016/j.jclepro.2024.142841
https://doi.org/10.1016/j.jclepro.2024.142841
Ibrahim, M. Y., and Sulaiman, H. (2024). Coconut shell-derived green synthesised carbon nanotubes for clean-up of crude oil spills. Pure and Applied Chemistry, 96(6), 861-874. https://doi.org/10.1515/pac-2024-0207
https://doi.org/10.1515/pac-2024-0207
Mogashane, T. M., Maree, J. P., and Mokoena, L. (2024). Adsorption of Polycyclic Aromatic Hydrocarbons from Wastewater Using Iron Oxide Nanomaterials Recovered from Acid Mine Water: A Review. Minerals, 14(8), 826. https://doi.org/10.3390/min14080826
https://doi.org/10.3390/min14080826
Bouafia, A., Meneceur, S., Chami, S., Laouini, S. E., Daoudi, H., Legmairi, S., Mohammed, H. a. M., Aoun, N., and Menaa, F. (2023). Removal of hydrocarbons and heavy metals from petroleum water by modern green nanotechnology methods. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-32938-1
https://doi.org/10.1038/s41598-023-32938-1
Elhenawy, S., Khraisheh, M., AlMomani, F., Al-Ghouti, M., Selvaraj, R., and Al-Muhtaseb, A. (2024). Emerging nanomaterials for drinking water purification: A new era of water treatment technology. Nanomaterials, 14(21), 1707. https://doi.org/10.3390/nano14211707
https://doi.org/10.3390/nano14211707
Reddy, M., Koneru, B., Franco, A., Rangappa, D., and Banerjee, P. (2021). Recent developments in nanomaterials based adsorbents for water purification techniques. Biointerface Research in Applied Chemistry, 12(5), 5821-5835. https://doi.org/10.33263/briac125.58215835
https://doi.org/10.33263/BRIAC125.58215835
Yahaya, M. I., and Salihu, Z. (2024). Efficiency of green synthesised carbon nanotubes from Moringa oleifera leaf extract as potential toxic metals adsorbent in polluted water. Pure and Applied Chemistry, 96(6), 835-845. https://doi.org/10.1515/pac-2024-0103
https://doi.org/10.1515/pac-2024-0103
Jangid, P., and Inbaraj, M. P. (2021). Applications of nanomaterials in wastewater treatment. Materials Today Proceedings, 43, 2877-2881. https://doi.org/10.1016/j.matpr.2021.01.126
https://doi.org/10.1016/j.matpr.2021.01.126
Pérez, H., García, O. J. Q., Amezcua-Allieri, M. A., and Vázquez, R. R. (2023). Nanotechnology as an efficient and effective alternative for wastewater treatment: an overview. Water Science and Technology, 87(12), 2971-3001. https://doi.org/10.2166/wst.2023.179
https://doi.org/10.2166/wst.2023.179
Jain, K., Patel, A. S., Pardhi, V. P., and Flora, S. J. S. (2021). Nanotechnology in Wastewater Management: A new paradigm towards wastewater treatment. Molecules, 26(6), 1797. https://doi.org/10.3390/molecules26061797
https://doi.org/10.3390/molecules26061797
Shmeis, R. M. A. (2022). Nanotechnology in wastewater treatment. In Comprehensive analytical chemistry (pp. 105-134). https://doi.org/10.1016/bs.coac.2021.11.002
https://doi.org/10.1016/bs.coac.2021.11.002
Mbarek, W. B., Escoda, L., Saurina, J., Pineda, E., Alminderej, F. M., Khitouni, M., and Suñol, J. (2022). Nanomaterials as a Sustainable Choice for treating wastewater: a review. Materials, 15(23), 8576. https://doi.org/10.3390/ma15238576
https://doi.org/10.3390/ma15238576
Epelle, E. I., Okoye, P. U., Roddy, S., Gunes, B., and Okolie, J. A. (2022). Advances in the applications of nanomaterials for wastewater treatment. Environments, 9(11), 141. https://doi.org/10.3390/environments9110141
https://doi.org/10.3390/environments9110141
García-Salcedo, Á. J., Giraldo-Pinto, L. Á., Márquez-Castro, D. J., and Tirado-Mejía, L. (2024). Influence of synthesis parameters on the optical properties of carbon dots. Carbon Trends, 100403. https://doi.org/10.1016/j.cartre.2024.100403
https://doi.org/10.1016/j.cartre.2024.100403
Vijeata, A., Chaudhary, G. R., Chaudhary, S., Ibrahim, A. A., and Umar, A. (2024). Recent advancements and prospects in carbon-based nanomaterials derived from biomass for environmental remediation applications. Chemosphere, 357, 141935. https://doi.org/10.1016/j.chemosphere.2024.141935
https://doi.org/10.1016/j.chemosphere.2024.141935
Suciu, R., Zagrai, M., Popa, A., Toloman, D., Berghian-Grosan, C., Tudoran, C., and Stefan, M. (2023). The influence of AG+/TI4+ ratio on structural, optical and photocatalytic properties of MWCNT-TIO2-AG nanocomposites. Inorganics, 11(6), 249. https://doi.org/10.3390/inorganics11060249
https://doi.org/10.3390/inorganics11060249
Malode, S. J., Shanbhag, M. M., Kumari, R., Dkhar, D. S., Chandra, P., and Shetti, N. P. (2022). Biomass-derived carbon nanomaterials for sensor applications. Journal of Pharmaceutical and Biomedical Analysis, 222, 115102. https://doi.org/10.1016/j.jpba.2022.115102
https://doi.org/10.1016/j.jpba.2022.115102
Zhou, Y., He, J., Chen, R., and Li, X. (2022). Recent advances in biomass-derived graphene and carbon nanotubes. Materials Today Sustainability, 18, 100138. https://doi.org/10.1016/j.mtsust.2022.100138
https://doi.org/10.1016/j.mtsust.2022.100138
Qasim, M., Clarkson, A. N., and Hinkley, S. F. R. (2023). Green Synthesis of Carbon Nanoparticles (CNPs) from Biomass for Biomedical Applications. International Journal of Molecular Sciences, 24(2), 1023. https://doi.org/10.3390/ijms24021023
https://doi.org/10.3390/ijms24021023
Zhang, S., Jiang, S., Huang, B., Shen, X., Chen, W., Zhou, T., Cheng, H., Cheng, B., Wu, C., Li, W., Jiang, H., and Yu, H. (2020). Sustainable production of value-added carbon nanomaterials from biomass pyrolysis. Nature Sustainability, 3(9), 753-760. https://doi.org/10.1038/s41893-020-0538-1
https://doi.org/10.1038/s41893-020-0538-1
Zakaria, N. Z. J., Rozali, S., Mubarak, N. M., and Ibrahim, S. (2022). A review of the recent trend in the synthesis of carbon nanomaterials derived from oil palm by-product materials. Biomass Conversion and Biorefinery, 14(1), 13-44. https://doi.org/10.1007/s13399-022-02430-3
https://doi.org/10.1007/s13399-022-02430-3
Pandey, A., Qamar, S. F., Das, S., Basu, S., Kesarwani, H., Saxena, A., Sharma, S., and Sarkar, J. (2023). Advanced multi-wall carbon nanotube-optimized surfactant-polymer flooding for enhanced oil recovery. Fuel, 355, 129463. https://doi.org/10.1016/j.fuel.2023.129463
https://doi.org/10.1016/j.fuel.2023.129463
Ibrahim, Y. (2022). Comparative AFM Studies on the Morphology of Conducting Polymers/DNA Templated Nanowires. Journal of Materials and Environmental Sustainability Research, 2(1), 39-52. https://doi.org/10.55455/jmesr.2022.003
https://doi.org/10.55455/jmesr.2022.003
Abdullah, T. A., Juzsakova, T., Hafad, S. A., Rasheed, R. T., Al-Jammal, N., Mallah, M. A., Salman, A. D., Le, P. C., Domokos, E., and Aldulaimi, M. (2021). Functionalized multi-walled carbon nanotubes for oil spill cleanup from water. Clean Technologies and Environmental Policy, 24(2), 519-541. https://doi.org/10.1007/s10098-021-02104-0
https://doi.org/10.1007/s10098-021-02104-0
Kudaibergenova, R. M., Roman, F. F., Silva, A. S., and Sugurbekova, G. K. (2024). Carbon-Nanotube-Based superhydrophobic magnetic nanomaterial as absorbent for rapid and efficient Oil/Water separation. Nanomaterials, 14(23), 1942. https://doi.org/10.3390/nano14231942
https://doi.org/10.3390/nano14231942
Al-Jammal, N., Abdullah, T. A., Juzsakova, T., Zsirka, B., Cretescu, I., Vágvölgyi, V., Sebestyén, V., Phuoc, C. L., Rasheed, R. T., and Domokos, E. (2019). Functionalized carbon nanotubes for hydrocarbon removal from water. Journal of Environmental Chemical Engineering, 8(2), 103570. https://doi.org/10.1016/j.jece.2019.103570
https://doi.org/10.1016/j.jece.2019.103570
Hoang, A. T., Nižetić, S., Cheng, C. K., Luque, R., Thomas, S., Banh, T. L., Pham, V. V., and Nguyen, X. P. (2021). Heavy metal removal by biomass-derived carbon nanotubes as a greener environmental remediation: A comprehensive review. Chemosphere, 287, 131959. https://doi.org/10.1016/j.chemosphere.2021.131959
https://doi.org/10.1016/j.chemosphere.2021.131959
Ani, J. U., Akpomie, K. G., Okoro, U. C., Aneke, L. E., Onukwuli, O. D., and Ujam, O. T. (2020). Potentials of activated carbon produced from biomass materials for sequestration of dyes, heavy metals, and crude oil components from aqueous environment. Applied Water Science, 10(2). https://doi.org/10.1007/s13201-020-1149-8
https://doi.org/10.1007/s13201-020-1149-8
Bedia, J., Peñas-Garzón, M., Gómez-Avilés, A., Rodriguez, J. J., and Belver, C. (2018). A Review on the Synthesis and Characterization of Biomass-Derived Carbons for Adsorption of Emerging Contaminants from Water. C - Journal of Carbon Research, 4(4), 63. https://doi.org/10.3390/c4040063
https://doi.org/10.3390/c4040063
Varshney, N., Tariq, M., Arshad, F., and Sk, M. P. (2022). Biomass-derived carbon dots for efficient cleanup of oil spills. Journal of Water Process Engineering, 49, 103016. https://doi.org/10.1016/j.jwpe.2022.103016
https://doi.org/10.1016/j.jwpe.2022.103016
Ouyang, D., Lei, X., and Zheng, H. (2023). Recent advances in Biomass-Based materials for oil spill cleanup. Nanomaterials, 13(3), 620. https://doi.org/10.3390/nano13030620
https://doi.org/10.3390/nano13030620
Gulistan, A. S., Ibrahim, T. H., Khamis, M. I., and ElSayed, Y. (2015). Application of eggplant peels powder for the removal of oil from produced water. Desalination and Water Treatment, 57(33), 15724-15732. https://doi.org/10.1080/19443994.2015.1130661
https://doi.org/10.1080/19443994.2015.1130661
Mottaghi, H., Mohammadi, Z., Abbasi, M., Tahouni, N., and Panjeshahi, M. H. (2021). Experimental investigation of crude oil removal from water using polymer adsorbent. Journal of Water Process Engineering, 40, 101959. https://doi.org/10.1016/j.jwpe.2021.101959
https://doi.org/10.1016/j.jwpe.2021.101959
Farooq, U., Patil, A., Panjwani, B., and Simonsen, G. (2021). Review on application of nanotechnology for asphaltene adsorption, crude oil demulsification, and produced water treatment. Energy and Fuels, 35(23), 19191-19210. https://doi.org/10.1021/acs.energyfuels.1c01990
https://doi.org/10.1021/acs.energyfuels.1c01990
Iqbal, A., Usman, M., Gul, K., Ullah, A., Shah, S. M. S., Rahman, H., and Khan, R. S. (2024). Insights into the morphological analysis, phytochemical profile and antimicrobial activities of the Multi-Walled carbon Nanotubes-Induced in vitro sugarcane. Sugar Tech, 26(6), 1522-1532. https://doi.org/10.1007/s12355-024-01417-w
https://doi.org/10.1007/s12355-024-01417-w
Cao, D., Niu, R., Mo, G., Deng, H., Liu, R., Liu, J., and Fan, J. (2024). Adsorption properties and competitive adsorption mechanism exhibited by carbon-nanotube-modified biochar for removal of crude oil and Ni(II) pollutants from water. Ecotoxicology and Environmental Safety, 290, 117557. https://doi.org/10.1016/j.ecoenv.2024.117557
https://doi.org/10.1016/j.ecoenv.2024.117557
Arum, L. a. S., Pawestri, Y. E., Zaki, M., Mahendratha, M. H. W., Awaliya, N., and Pratama, M. M. A. (2021). An overview on carbon nanotubes as innovative absorbent for marine oil spill. IOP Conference Series Earth and Environmental Science, 847(1), 012034. https://doi.org/10.1088/1755-1315/847/1/012034
https://doi.org/10.1088/1755-1315/847/1/012034
Alhassani, W., Alhogbi, B. G., Hussein, M. A., and El-Shahawi, M. S. (2024). Exploring the potential of recycled polyethylene Terephthalate-Lignocellulose/Carbon Nanotube-Graphene nanosheets an efficient extractor for oil spill. Processes, 12(11), 2437. https://doi.org/10.3390/pr12112437
https://doi.org/10.3390/pr12112437
Verma, B., and Balomajumder, C. (2019). Surface modification of one-dimensional Carbon Nanotubes: A review for the management of heavy metals in wastewater. Environmental Technology and Innovation, 17, 100596. https://doi.org/10.1016/j.eti.2019.100596
https://doi.org/10.1016/j.eti.2019.100596
Ogunsola, S. S., Oladipo, M. E., Oladoye, P. O., and Kadhom, M. (2024). Carbon nanotubes for sustainable environmental remediation: A critical and comprehensive review. Nano-Structures and Nano-Objects, 37, 101099. https://doi.org/10.1016/j.nanoso.2024.101099
https://doi.org/10.1016/j.nanoso.2024.101099
Khan, A., and Alamry, K. A. (2022). Surface Modified Carbon Nanotubes: An Introduction. In ACS symposium series (pp. 1-25). https://doi.org/10.1021/bk-2022-1424.ch001
https://doi.org/10.1021/bk-2022-1424.ch001
Elsehly, E. M., and Chechenin, N. G. (2024). The performance of functionalized Multi-Walled Carbon Nanotube-Based filters for water treatment applications. In Nanotechnology and nanomaterials. https://doi.org/10.5772/intechopen.114885
https://doi.org/10.5772/intechopen.114885
Islam, M. A., Chowdhury, M. A., Mozumder, M. S. I., and Uddin, M. T. (2021). Langmuir Adsorption Kinetics in Liquid Media: Interface Reaction Model. ACS Omega, 6(22), 14481-14492. https://doi.org/10.1021/acsomega.1c01449
https://doi.org/10.1021/acsomega.1c01449
Akinpelu, A. A., Ali, M. E., Johan, M. R., Saidur, R., Chowdhury, Z. Z., Shemsi, A. M., and Saleh, T. A. (2019). Effect of the oxidation process on the molecular interaction of polyaromatic hydrocarbons (PAH) with carbon nanotubes: Adsorption kinetic and isotherm study. Journal of Molecular Liquids, 289, 111107.