Techno-Economic Optimization of Clean Energy Hybrid Systems in the Context of Assorted Battery Storage Technologies
Main Article Content
Abstract
This paper presents a techno-economic analysis of hybrid energy systems based on different battery energy storage technologies (BESS) of lithium-ion battery (LIB), Nickel metal-hydride (NiMH), Nickel-cadmium (Ni-Cd) and Lead Acid Battery (LAB). Three different hybrid power system configurations of solar photovoltaic (PV) and battery (PV/BESS), wind turbine (WT) integrated with battery (WT/BESS) and PV/WT/BESS were studied. The techno-economic optimizations were performed based on applying modern intelligent computational techniques of Flower Pollination Algorithm (FPA) and Particle Swarm Optimization (PSO). Simulations conducted for the hybrid systems show that the most cost-effective energy system configuration has a Cost of Energy (COE) of 0.125 $/kWh, Net Present Cost (NPC) of $76,402.00 and Deficit Power Supply Probability (DPSP) of 0.012 as obtained by the FPA optimization technique in the PV/WT/BESS. Besides, it was also found that among the four battery technologies selected for this study, LIB exhibited the best techno-economic benefits regarding the number of batteries required, COE and the NPC of a small-scale hybrid power system for the case study location. The viability and application prospects of other selected BESS have also been established in the framework based on the results obtained.
Article Details
Copyright (c) 2024 Yekini Suberu Mohammed, Mathurine Guiawa, Onyegbadue Ikenna Augustine, Funsho Olowoniyi (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Yekini Suberu Mohammed, Igbinedion University Okada, Edo State, Nigeria.
Department of Electrical and Computer Engineering,
College of Engineering, Igbinedion University Okada, Edo State, Nigeria.
Mathurine Guiawa, Igbinedion University Okada, Edo State, Nigeria.
Department of Electrical and Computer Engineering,
College of Engineering, Igbinedion University Okada, Edo State, Nigeria.
Onyegbadue Ikenna Augustine, Igbinedion University Okada, Edo State, Nigeria.
Department of Electrical and Computer Engineering,
College of Engineering, Igbinedion University Okada, Edo State, Nigeria.
Funsho Olowoniyi, Igbinedion University Okada, Edo State, Nigeria.
Department of Electrical and Computer Engineering,
College of Engineering, Igbinedion University Okada, Edo State, Nigeria.
Abdin, Z., & Mérida, W. (2019). Hybrid energy systems for off-grid power supply and hydrogen production based on renewable energy: A techno-economic analysis. Energy Conversion and management, 196, 1068-1079.
https://doi.org/10.1016/j.enconman.2019.06.068 DOI: https://doi.org/10.1016/j.enconman.2019.06.068
Al-Ghussain, L., Ahmad, A. D., Abubaker, A. M., & Mohamed, M. A. (2021). An integrated photovoltaic/wind/biomass and hybrid energy storage systems towards 100% renewable energy microgrids in university campuses. Sustainable Energy Technologies and Assessments, 46, 101273.
https://doi.org/10.1016/j.seta.2021.101273 DOI: https://doi.org/10.1016/j.seta.2021.101273
Babatunde, O. M., Munda, J. L., & Hamam, Y. (2022). Hybridized off-grid fuel cell/wind/solar PV/battery for energy generation in a small household: A multi-criteria perspective. International Journal of Hydrogen Energy, 47(10), 6437-6452.
https://doi.org/10.1016/j.ijhydene.2021.12.018 DOI: https://doi.org/10.1016/j.ijhydene.2021.12.018
Babatunde, O., Denwigwe, I., Oyebode, O., Ighravwe, D., Ohiaeri, A., & Babatunde, D. (2022). Assessing the use of hybrid renewable energy system with battery storage for power generation in a University in Nigeria. Environmental Science and Pollution Research, 29(3), 4291-4310.
https://doi.org/10.1007/s11356-021-15151-3 DOI: https://doi.org/10.1007/s11356-021-15151-3
Bahramirad, S., Reder, W., & Khodaei, A. (2012). Reliability-constrained optimal sizing of energy storage system in a microgrid. IEEE Transactions on Smart Grid, 3(4), 2056-2062.
https://doi.org/10.1109/TSG.2012.2217991 DOI: https://doi.org/10.1109/TSG.2012.2217991
Barakat, S., Ibrahim, H., & Elbaset, A. A. (2020). Multi-objective optimization of grid-connected PV-wind hybrid system considering reliability, cost, and environmental aspects. Sustainable Cities and Society, 60, 102178.
https://doi.org/10.1016/j.scs.2020.102178 DOI: https://doi.org/10.1016/j.scs.2020.102178
Baseer, M. A., Alqahtani, A., & Rehman, S. (2019). Techno-economic design and evaluation of hybrid energy systems for residential communities: Case study of Jubail industrial city. Journal of Cleaner Production, 237, 117806.
https://doi.org/10.1016/j.jclepro.2019.117806 DOI: https://doi.org/10.1016/j.jclepro.2019.117806
Darling, S. B., You, F., Veselka, T., & Velosa, A. (2011). Assumptions and the levelized cost of energy for photovoltaics. Energy & environmental science, 4(9), 3133-3139.
https://doi.org/10.1039/c0ee00698j DOI: https://doi.org/10.1039/c0ee00698j
Elhadidy, M. A. (2002). Performance evaluation of hybrid (wind/solar/diesel) power systems. Renewable energy, 26(3), 401-413.
https://doi.org/10.1016/S0960-1481(01)00139-2 DOI: https://doi.org/10.1016/S0960-1481(01)00139-2
Hemeida, A. M., El-Ahmar, M. H., El-Sayed, A. M., Hasanien, H. M., Alkhalaf, S., Esmail, M. F. C., & Senjyu, T. (2020). Optimum design of hybrid wind/PV energy system for remote area. Ain Shams Engineering Journal, 11(1), 11-23.
https://doi.org/10.1016/j.asej.2019.08.005 DOI: https://doi.org/10.1016/j.asej.2019.08.005
Hussaini, A., & Matazu, B. M. (2023). An overview of key improvements by the Nigerian Meteorological Agency for the modernisation of Meteorological Services in Nigeria. Science World Journal, 18(1), 152-157.
Islam, M. R., Akter, H., Howlader, H. O. R., & Senjyu, T. (2022). Optimal sizing and techno-economic analysis of grid-independent hybrid energy system for sustained rural electrification in developing countries: A case study in Bangladesh. Energies, 15(17), 6381.
https://doi.org/10.3390/en15176381 DOI: https://doi.org/10.3390/en15176381
Jumare, I. A., Bhandari, R., & Zerga, A. (2020). Assessment of a decentralized grid-connected photovoltaic (PV)/wind/biogas hybrid power system in northern Nigeria. Energy, Sustainability and Society, 10, 1-25.
https://doi.org/10.1186/s13705-020-00260-7 DOI: https://doi.org/10.1186/s13705-020-00260-7
Kaabeche, A., & Ibtiouen, R. (2014). Techno-economic optimization of hybrid photovoltaic/wind/diesel/battery generation in a stand-alone power system. Solar Energy, 103, 171-182.
https://doi.org/10.1016/j.solener.2014.02.017 DOI: https://doi.org/10.1016/j.solener.2014.02.017
Maleki, A., & Pourfayaz, F. (2015). Optimal sizing of autonomous hybrid photovoltaic/wind/battery power system with LPSP technology by using evolutionary algorithms. Solar Energy, 115, 471-483.
https://doi.org/10.1016/j.solener.2015.03.004 DOI: https://doi.org/10.1016/j.solener.2015.03.004
Maleki, A., Nazari, M. A., & Pourfayaz, F. (2020). Harmony search optimization for optimum sizing of hybrid solar schemes based on battery storage unit. Energy Reports, 6, 102-111.
https://doi.org/10.1016/j.egyr.2020.03.014 DOI: https://doi.org/10.1016/j.egyr.2020.03.014
Mohammed, Y. S., Mustafa, M. W., Bashir, N., & Ibrahem, I. S. (2017). Existing and recommended renewable and sustainable energy development in Nigeria based on autonomous energy and microgrid technologies. Renewable and Sustainable Energy Reviews, 75, 820-838.
https://doi.org/10.1016/j.rser.2016.11.062 DOI: https://doi.org/10.1016/j.rser.2016.11.062
Mohseni, S., & Brent, A. C. (2020). Economic viability assessment of sustainable hydrogen production, storage, and utilisation technologies integrated into on-and off-grid micro-grids: A performance comparison of different meta-heuristics. international journal of hydrogen energy, 45(59), 34412-34436.
https://doi.org/10.1016/j.ijhydene.2019.11.079 DOI: https://doi.org/10.1016/j.ijhydene.2019.11.079
Moretti, L., Astolfi, M., Vergara, C., Macchi, E., Pérez-Arriaga, J. I., & Manzolini, G. (2019). A design and dispatch optimization algorithm based on mixed integer linear programming for rural electrification. Applied energy, 233, 1104-1121.
https://doi.org/10.1016/j.apenergy.2018.09.194 DOI: https://doi.org/10.1016/j.apenergy.2018.09.194
Muhammad, Y., Raja, M. A. Z., Altaf, M., Ullah, F., Chaudhary, N. I., & Shu, C. M. (2022). Design of fractional comprehensive learning PSO strategy for optimal power flow problems. Applied Soft Computing, 130, 109638.
https://doi.org/10.1016/j.asoc.2022.109638 DOI: https://doi.org/10.1016/j.asoc.2022.109638
Oladigbolu, J. O., Al-Turki, Y. A., & Olatomiwa, L. (2021). Comparative study and sensitivity analysis of a standalone hybrid energy system for electrification of rural healthcare facility in Nigeria. Alexandria Engineering Journal, 60(6), 5547-5565.
https://doi.org/10.1016/j.aej.2021.04.042 DOI: https://doi.org/10.1016/j.aej.2021.04.042
Qian, J., Wu, X., Kim, D. S., & Lee, D. W. (2017). Seesaw-structured triboelectric nanogenerator for scavenging electrical energy from rotational motion of mechanical systems. Sensors and Actuators A: Physical, 263, 600-609.
https://doi.org/10.1016/j.sna.2017.07.021 DOI: https://doi.org/10.1016/j.sna.2017.07.021
Ramesh, M., & Saini, R. P. (2020). Effect of different batteries and diesel generator on the performance of a stand-alone hybrid renewable energy system. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-23.
https://doi.org/10.1080/15567036.2020.1763520 DOI: https://doi.org/10.1080/15567036.2020.1763520
Ramli, M. A., Bouchekara, H. R. E. H., & Alghamdi, A. S. (2018). Optimal sizing of PV/wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm. Renewable energy, 121, 400-411.
https://doi.org/10.1016/j.renene.2018.01.058 DOI: https://doi.org/10.1016/j.renene.2018.01.058
Rasmussen, C. N. (2011). Energy storage for improvement of wind power characteristics. In 2011 IEEE Trondheim PowerTech (pp. 1-8). IEEE.
https://doi.org/10.1109/PTC.2011.6019315 DOI: https://doi.org/10.1109/PTC.2011.6019315
Saez-de-Ibarra, A., Martinez-Laserna, E., Stroe, D. I., Swierczynski, M., & Rodriguez, P. (2016). Sizing study of second life Li-ion batteries for enhancing renewable energy grid integration. IEEE Transactions on Industry Applications, 52(6), 4999-5008.
https://doi.org/10.1109/TIA.2016.2593425 DOI: https://doi.org/10.1109/TIA.2016.2593425
Salman, I., Ucan, O. N., Bayat, O., & Shaker, K. (2018). Impact of metaheuristic iteration on artificial neural network structure in medical data. Processes, 6(5), 57.
https://doi.org/10.3390/pr6050057 DOI: https://doi.org/10.3390/pr6050057
Sanajaoba, S. (2019). Optimal sizing of off-grid hybrid energy system based on minimum cost of energy and reliability criteria using firefly algorithm. Solar Energy, 188, 655-666.
https://doi.org/10.1016/j.solener.2019.06.049 DOI: https://doi.org/10.1016/j.solener.2019.06.049
Wang, D., Tan, D., & Liu, L. (2018). Particle swarm optimization algorithm: an overview. Soft computing, 22(2), 387-408
https://doi.org/10.1007/s00500-016-2474-6 DOI: https://doi.org/10.1007/s00500-016-2474-6
Yang, Y., Bremner, S., Menictas, C., & Kay, M. (2018). Battery energy storage system size determination in renewable energy systems: A review. Renewable and Sustainable Energy Reviews, 91, 109-125.
https://doi.org/10.1016/j.rser.2018.03.047 DOI: https://doi.org/10.1016/j.rser.2018.03.047
Yang, X. S., Deb, S., & He, X. (2013, August). Eagle strategy with flower algorithm. In 2013 international conference on advances in computing, communications and informatics (ICACCI) (pp. 1213-1217). IEEE.
Yousri, D., Babu, T. S., Allam, D., Ramachandaramurthy, V. K., Beshr, E., & Eteiba, M. B. (2019). Fractional chaos maps with flower pollination algorithm for partial shading mitigation of photovoltaic systems. Energies, 12(18), 3548.
https://doi.org/10.3390/en12183548 DOI: https://doi.org/10.3390/en12183548
Zantye, M. S., Gandhi, A., Wang, Y., Vudata, S. P., Bhattacharyya, D., & Hasan, M. F. (2022). Optimal design and integration of decentralized electrochemical energy storage with renewables and fossil plants. Energy & Environmental Science, 15(10), 4119-4136.
https://doi.org/10.1039/D2EE00771A DOI: https://doi.org/10.1039/D2EE00771A