Application of Meta-Analysis for Assessing Correlational Data in Diabetic Patients
Main Article Content
Abstract
Meta-analysis is a powerful statistical technique used to synthesize findings from multiple studies, offering a comprehensive understanding of specific research questions. This study explores the application of meta-analysis to assess correlational data in diabetic patients, focusing on relationships between key variables such as glycemic control 0and demographic factors. The primary objective is to consolidate fragmented research findings and provide a unified framework to inform clinical practices and policy decisions. A systematic literature review was conducted across major databases to identify studies reporting correlational data in diabetic populations. Relevant data were extracted, coded, and analyzed using advanced meta-analytic techniques. Heterogeneity among studies was addressed using random-effects model, and publication bias was evaluated using funnel plots and Egger's test. Results reveal consistent and statistically significant correlations between poor glycemic control. The findings highlight critical areas requiring targeted intervention. The study concludes that meta-analysis provides robust insights into complex relationships within diabetic populations, enhancing evidence-based decision-making. It recommends the adoption of standardized reporting protocols and further research into less-explored psychosocial and environmental determinants of diabetes outcomes.
Article Details
Copyright (c) 2024 Stella Ene Ochonu (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Stella Ene Ochonu, Department of Statistics and Data Analytics, Faculty of Natural Sciences, Nasarawa State University, Keffi, Nigeria.
Department of Statistics and Data Analytics,
Faculty of Natural Sciences,
Nasarawa State University, Keffi, Nigeria.
Awodele O, Osuolale JA. (2015); Medication adherence in type 2 diabetes patients: study of patients in Alimosho General hospital, Igando, Lagos, Nigeria. Afr Health Sci 2015;15:513e22. DOI: https://doi.org/10.4314/ahs.v15i2.26
https://doi.org/10.4314/ahs.v15i2.26
Adehi M. U., Yakasai A. M., Dikko H. G., Asiribo E. O. and Dahiru T. 2017. "Risk of maternal mortality using relative risk ratios obtained from poisson regression analysis", International Journal of Development Research, 7, (09), 15405-15409.
American Diabetea Association. (2018). Introduction: Standards of Medical Care in Diabetes. Diabetes Care, 41(Supplement_1), S1-S2. https://doi.org/10.2337/dc18-Sint01 DOI: https://doi.org/10.2337/dc18-Sint01
https://doi.org/10.2337/dc18-Sint01
American Diabetea Association. (2020). Standards of Medical Care in Diabetes; Abridged for Primary Care Providers. Clinical Diabetes, 38(1), 10-38. https://doi.org/10.2337/cd20-as01 DOI: https://doi.org/10.2337/cd20-as01
https://doi.org/10.2337/cd20-as01
American Diabetes Association. (2022). Standards of Medical Care in Diabetes-2022 Abridged for Primary Care Providers. Clinical Diabetes, 40(1), 10-38. https://doi.org/10.2337/cd22-as01 DOI: https://doi.org/10.2337/cd22-as01
https://doi.org/10.2337/cd22-as01
Adisa R, Alutundu MB, Fakeye TO.(2009) Factors contributing to nonadherence to oral hypoglycaemic medications among ambulatory type 2 diabetes patients in Southwestern Nigeria. Pharmacy Pract 2009;7: 163e9. DOI: https://doi.org/10.4321/S1886-36552009000300006
https://doi.org/10.4321/S1886-36552009000300006
Bernal, J.L.; Cummins, S.; Gasparrini, A. Interrupted time series regression for the evaluation of public health interventions: A tutorial. Int. J. Epidemiol. 2017, 46, 348-355. [CrossRef]
Bamgboye EL. (2003); Hemodialysis: management problems in developing countries, with Nigeria as a surrogate. Kidney Int;63:593e5. DOI: https://doi.org/10.1046/j.1523-1755.63.s83.19.x
https://doi.org/10.1046/j.1523-1755.63.s83.19.x
Banday, M. Z., Sameer, A. S., & Nissar, S. (2020). Pathophysiology of diabetes: An overview. Avicenna Journal of Medicine, 10(04), 174-188. https://doi.org/10.4103/ajm.ajm_53_20 DOI: https://doi.org/10.4103/ajm.ajm_53_20
https://doi.org/10.4103/ajm.ajm_53_20
Bandura, A. (1991). Social cognitive theory of self-regulation. Organizational Behavior and Human Decision Processes, 50(2), 248-287. DOI: https://doi.org/10.1016/0749-5978(91)90022-L
https://doi.org/10.1016/0749-5978(91)90022-L
Chinenye S, Young E. (2011); State of diabetes care in Nigeria: a review. Nigerian Health J 2011;11:101e6.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates.
Fasanmade O. A., Dagogo-Jack S. (2015); Diabetes Care in Nigeria Icahn School of Medicine at Mount Sinai. This is an open access article under the CC BY-NC-ND license. DOI: https://doi.org/10.1016/j.aogh.2015.12.012
https://doi.org/10.1016/j.aogh.2015.12.012
Goldenberg, J. Z., Day, A., Brinkworth, G. D., Sato, J., Yamada, S., Jönsson, T., Beardsley, J., Johnson, J. A., Thabane, L., & Johnston, B. C. (2021). Efficacy and safety of low and very low carbohydrate diets for type 2 diabetes remission: systematic review and meta-analysis of published and unpublished randomized trial data. BMJ (Clinical research ed.), 372, m4743. https://doi.org/10.1136/bmj.m4743 DOI: https://doi.org/10.1136/bmj.m4743
https://doi.org/10.1136/bmj.m4743
Galicia-Garcia, U., Benito-Vicente, A., Jebari, S., Larrea-Sebal, A., Siddiqi, H., Uribe, K. B., Ostolaza, H., & Martín, C. (2020). Pathophysiology of Type 2 Diabetes Mellitus. International Journal of Molecular Sciences, 21(17), 6275. https://doi.org/10.3390/ijms21176275 DOI: https://doi.org/10.3390/ijms21176275
https://doi.org/10.3390/ijms21176275
González-Touya, M.; Carmona, R.; Sarría-Santamera, A. (2021); Evaluating the Impact of the Diabetes Mellitus Strategy for the National Health System: An Interrupted Time Series Analysis. Healthcare, 9, 873. https://doi.org/10.3390/healthcare9070873 DOI: https://doi.org/10.3390/healthcare9070873
https://doi.org/10.3390/healthcare9070873
International Diabetes Federation. (2022). International Diabetes Federation Annual Report 2022. http://www.idf.org/
Integrated African Health Observatory. (2023). Diabetes, a silent killer in Africa. WHO Analytical Fact Sheet Fact Sheet, 1. https://www.linkedin.com/company/iaho/
Katsarou, A., Gudbjörnsdottir, S., Rawshani, A., Dabelea, D., Bonifacio, E., Anderson, B. J., Jacobsen, L. M., Schatz, D. A., & Lernmark, Å. (2017). Type 1 diabetes mellitus. Nature Reviews Disease Primers, 3(1), 17016. https://doi.org/10.1038/nrdp.2017.16 DOI: https://doi.org/10.1038/nrdp.2017.16
https://doi.org/10.1038/nrdp.2017.16
Moucheraud, C., Lenz, C., Latkovic, M., & Wirtz, V. J. (2019). The costs of diabetes treatment in low- and middle-income countries: A systematic review. BMJ Global Health, 4(1), e001258. https://doi.org/10.1136/bmjgh-2018-001258 DOI: https://doi.org/10.1136/bmjgh-2018-001258
https://doi.org/10.1136/bmjgh-2018-001258
Marciano, L., Camerini, A. L., & Schulz, P. J. (2019). The Role of Health Literacy in Diabetes Knowledge, Self-Care, and Glycemic Control: a Meta-analysis. Journal of general internal medicine, 34(6), 1007-1017. https://doi.org/10.1007/s11606-019-04832-y DOI: https://doi.org/10.1007/s11606-019-04832-y
https://doi.org/10.1007/s11606-019-04832-y
Nwankwo CH, Nandy B, Nwankwo BO.(2010) Factors influencing diabetes management outcome among patients attending government health facilities in South east Nigeria. Int J Trop Med 2010;5:28e36. DOI: https://doi.org/10.3923/ijtmed.2010.28.36
https://doi.org/10.3923/ijtmed.2010.28.36
Nwafor A, Owhoji A. (2015) Prevalence of diabetes mellitus among Nigerians in Port Harcourt correlates with socioeconomic status. J Appl Sci Environ Management;5:75e7. DOI: https://doi.org/10.4314/jasem.v5i1.54950
https://doi.org/10.4314/jasem.v5i1.54950
National Bureau of Statistics. (2015); Nigeria Gross Domestic Product Report, Quarter Four, 2014. Available at: www.nigerianstat.gov.ng. Accessed December 6, 2015.
Popoviciu, M.S.; Marin, V.N.; Vesa, C.M.; Stefan, S.D.; Stoica, R.A.; Serafinceanu, C.; Merlo, E.M.; Rizvi, A.A.; Rizzo, M.; Busnatu, S.; et al. (2022) Correlations between Diabetes Mellitus Self-Care Activities and Glycaemic Control in the Adult Population: A Cross-Sectional Study. Healthcare, 10, 174. https://doi.org/10.3390/healthcare10010174. DOI: https://doi.org/10.3390/healthcare10010174
https://doi.org/10.3390/healthcare10010174
Ogbera AO, Kapur A, Odeyemi K, et al. (2014) Screening for diabetes mellitus and human immune deficiency virus infection in persons with tuberculosis. J Prev Med Hyg;55:42e5.
Rothe, U.; Manuwald, U.; Kugler, J.; Schulze, J. Quality criteria/key components for high quality of diabetes management to avoid diabetes-related complications. J. Public Health 2020. [CrossRef] DOI: https://doi.org/10.1007/s10389-020-01227-w
https://doi.org/10.1007/s10389-020-01227-w
Rosengren, A. Cardiovascular disease in diabetes type 2: Current concepts. J. Intern. Med. 2018, 284, 240-253. [CrossRef] DOI: https://doi.org/10.1111/joim.12804
https://doi.org/10.1111/joim.12804
Rubin RR. (2005); Adherence to pharmacotherapy in patients with type 2 diabetes. Am J Med 2005; 118:27Se34S. DOI: https://doi.org/10.1016/j.amjmed.2005.04.012
https://doi.org/10.1016/j.amjmed.2005.04.012
Sarría-Santamera, A. (2020); Diseños y metodologías para evaluar el impacto de las intervenciones. Rev. Esp. Cardiol. 73, 689. [CrossRef] DOI: https://doi.org/10.1016/j.recesp.2019.12.026
https://doi.org/10.1016/j.recesp.2019.12.026
WHO. (2023). Mean fasting blood glucose [The Global Health Observatory]. https://www.who.int/data/gho/indicator-metadata-registry/imr-details/2380#:~:text=The%20expected%20values%20for%20normal,and%20monitoring%20glycemia%20are%20recommended.
Yohannes, Y. B., Woldeamanuel, B. T., & Ayano, B. (2021). Fasting Blood Glucose Level Progression and Its Associated Factors Among Diabetic Patients Attending Treatment In North Shewa Hospitals, Oromia, Ethiopia. Research Square pp1-18 https://doi.org/10.21203/rs.3.rs-1195059/v1 DOI: https://doi.org/10.21203/rs.3.rs-1195059/v1
https://doi.org/10.21203/rs.3.rs-1195059/v1
Zhang, Q., Xue, T.; Li, Q.; Lin, W.; Weng, J.; Li, L.; Chen, G. (2020); Blood glucose levels in elderly subjects with type 2 diabetes during COVID-19 outbreak: A retrospective study in a single center. medRxiv, 3, 20048579.
Engel, G. L. (1977). The need for a new medical model: A challenge for biomedicine. Science, 196(4286), 129-136. DOI: https://doi.org/10.1126/science.847460
https://doi.org/10.1126/science.847460
Hedges, L. V., & Vevea, J. L. (1998). Fixed- and random-effects models in meta-analysis. Psychological Methods, 3(4), 486-504. DOI: https://doi.org/10.1037//1082-989X.3.4.486
https://doi.org/10.1037//1082-989X.3.4.486
Higgins, J. P., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. BMJ, 327(7414), 557-560. DOI: https://doi.org/10.1136/bmj.327.7414.557
https://doi.org/10.1136/bmj.327.7414.557
Kline, R. B. (2015). Principles and practice of structural equation modeling (4th ed.). Guilford Press.
Rosenstock, I. M. (1974). Historical origins of the health belief model. Health Education Monographs, 2(4), 328-335. DOI: https://doi.org/10.1177/109019817400200403
https://doi.org/10.1177/109019817400200403
Sterne, J. A., Egger, M., & Smith, G. D. (2005). Investigating and dealing with publication and other biases in meta-analysis. BMJ, 323(7304), 101-105. DOI: https://doi.org/10.1136/bmj.323.7304.101
https://doi.org/10.1136/bmj.323.7304.101
American Diabetes Association. (2020). Standards of Medical Care in Diabetes-2020. Diabetes Care, 43(Supplement 1), S1-S212. DOI: https://doi.org/10.2337/dc20-Sint
https://doi.org/10.2337/dc20-Sint
Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to Meta-Analysis. John Wiley & Sons.
https://doi.org/10.1002/9780470743386
Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences (3rd ed.). Routledge.
Miller, R. G., Secrest, A. M., Sharma, R. K., Songer, T. J., & Orchard, T. J. (2002). Improvements in the life expectancy of type 1 diabetes. The Pittsburgh Epidemiology of Diabetes Complications Study cohort. Diabetes, 51(4), 1254-1260.
Nathan, D. M., Turgeon, H., & Regan, S. (2009). Relationship between glycated hemoglobin levels and mean glucose levels over time. Diabetologia, 52(8), 1564-1572.
Schmidt, F. L., & Hunter, J. E. (2015). Methods of Meta-Analysis: Correcting Error and Bias in Research Findings (3rd ed.). SAGE Publications. DOI: https://doi.org/10.4135/9781483398105
https://doi.org/10.4135/9781483398105
Stratton, I. M., Adler, A. I., Neil, H. A. W., Matthews, D. R., Manley, S. E., Cull, C. A., Hadden, D., Turner, R. C., & Holman, R. R. (2000). Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ, 321(7258), 405-412. DOI: https://doi.org/10.1136/bmj.321.7258.405
https://doi.org/10.1136/bmj.321.7258.405
Tuomilehto, J., Lindström, J., Eriksson, J. G., Valle, T. T., Hämäläinen, H., Ilanne-Parikka, P., ... & Uusitupa, M. (2001). Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. New England Journal of Medicine, 344(18), 1343-1350. DOI: https://doi.org/10.1056/NEJM200105033441801
https://doi.org/10.1056/NEJM200105033441801
Goyal, R., & Jialal, I. (2018). Association between inflammation markers and Type 2 Diabetes Mellitus: A meta-analysis. Journal of Diabetes Research, 2018.
Zhou, H., Chen, B., & Jin, W. (2019). Vitamin D deficiency and Type 2 Diabetes Mellitus: An updated meta-analysis. Diabetes Care, 42(5), 1248-1258.
Li, S., Wang, J., & Zhang, B. (2017). Glycosylated hemoglobin and cardiovascular complications in diabetes: A meta-analysis. Journal of the American College of Cardiology, 70(12), 1578-1588.
Wang, Y., Fang, Q., & Tang, Y. (2020). Obesity and Type 2 Diabetes: A meta-analysis of cohort studies. The Lancet Diabetes & Endocrinology, 8(3), 191-200.
Palmer, N. D., McCarthy, M. I., & Hicks, P. J. (2015). Genetic determinants of Type 2 Diabetes: A meta-analysis of genome-wide association studies. Diabetes, 64(2), 432-444.
Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2009). Introduction to Meta-Analysis. John Wiley & Sons.
https://doi.org/10.1002/9780470743386
Porta, M. (2008). A Dictionary of Epidemiology (5th ed.). Oxford University Press.
Higgins, J. P. T., & Green, S. (Eds.). (2011). Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0 [updated March 2011]. The Cochrane Collaboration. Available from http://handbook.cochrane.org
Petticrew, M., & Roberts, H. (2006). Systematic Reviews in the Social Sciences: A Practical Guide. Blackwell Publishing. DOI: https://doi.org/10.1002/9780470754887
https://doi.org/10.1002/9780470754887
Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2011). Introduction to meta-analysis. John Wiley & Sons.
Egger, M., Davey Smith, G., & Altman, D. G. (2001). Systematic reviews in health care: Meta-analysis in context. BMJ Books. DOI: https://doi.org/10.1002/9780470693926
https://doi.org/10.1002/9780470693926
Higgins, J. P. T., & Green, S. (Eds.). (2011). Cochrane Handbook for Systematic Reviews of Interventions. The Cochrane Collaboration.
Ioannidis, J. P. A. (2016). The mass production of redundant, misleading, and conflicted systematic reviews and meta-analyses. The Milbank Quarterly, 94(3), 485-514. DOI: https://doi.org/10.1111/1468-0009.12210
https://doi.org/10.1111/1468-0009.12210
Kumar, R. (2019). Research Methodology: A Step-by-Step Guide for Beginners (5th ed.). Sage Publications
Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to Meta-Analysis. John Wiley & Sons.
https://doi.org/10.1002/9780470743386
Sutton, A. J., Abrams, K. R., Jones, D. R., Sheldon, T. A., & Song, F. (2000). Methods for Meta-Analysis in Medical Research. John Wiley & Sons.
Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to Meta-Analysis. John Wiley & Sons.
https://doi.org/10.1002/9780470743386
Hedges, L. V., & Olkin, I. (1985). Statistical Methods for Meta-Analysis. Academic Press.
Higgins, J. P. T., & Green, S. (Eds.). (2011). Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0 [updated March 2011]. The Cochrane Collaboration. Available from www.handbook.cochrane.org.
Hunter, J. E., & Schmidt, F. L. (2004). Methods of Meta-Analysis: Correcting Error and Bias in Research Findings (2nd ed.). SAGE Publications, Inc.
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & The PRISMA Group. (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097 DOI: https://doi.org/10.1371/journal.pmed.1000097
https://doi.org/10.1371/journal.pmed.1000097
American Diabetes Association. (2020). Classification and diagnosis of diabetes: Standards of medical care in diabetes-2020. Diabetes Care, 43(Supplement 1), S14-S31. doi:10.2337/dc20-S002 DOI: https://doi.org/10.2337/dc20-S002
https://doi.org/10.2337/dc20-S002
World Health Organization. (2021). Diabetes. Retrieved from https://www.who.int/news-room/fact-sheets/detail/diabetes
International Diabetes Federation. (2019). IDF Diabetes Atlas (9th ed.).
Higgins, J. P., & Green, S. (Eds.). (2011). Cochrane handbook for systematic reviews of interventions (Vol. 4). John Wiley & Sons.
Egger, M., Smith, G. D., & Altman, D. G. (1995). Systematic Reviews in Health Care: Meta-Analysis in Context. London: BMJ Publishing Group.
Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2009). Introduction to Meta-Analysis. John Wiley & Sons. DOI: https://doi.org/10.1002/9780470743386
https://doi.org/10.1002/9780470743386
Chew, B. H., Vos, R., Mohd-Sidik, S., & Rutten, G. E. H. M. (2019). Diabetes-related distress, depression and distress-depression among adults with type 2 diabetes mellitus in Malaysia. PLoS ONE, 14(3), e0213421. https://doi.org/10.1371/journal.pone.0213421