Application of Meta-Analysis for Assessing Correlational Data in Diabetic Patients
“crossref”/

Main Article Content

Stella Ene Ochonu 

Abstract

Meta-analysis is a powerful statistical technique used to synthesize findings from multiple studies, offering a comprehensive understanding of specific research questions. This study explores the application of meta-analysis to assess correlational data in diabetic patients, focusing on relationships between key variables such as glycemic control 0and demographic factors. The primary objective is to consolidate fragmented research findings and provide a unified framework to inform clinical practices and policy decisions. A systematic literature review was conducted across major databases to identify studies reporting correlational data in diabetic populations. Relevant data were extracted, coded, and analyzed using advanced meta-analytic techniques. Heterogeneity among studies was addressed using random-effects model, and publication bias was evaluated using funnel plots and Egger's test. Results reveal consistent and statistically significant correlations between poor glycemic control. The findings highlight critical areas requiring targeted intervention. The study concludes that meta-analysis provides robust insights into complex relationships within diabetic populations, enhancing evidence-based decision-making. It recommends the adoption of standardized reporting protocols and further research into less-explored psychosocial and environmental determinants of diabetes outcomes.

Article Details

Stella Ene Ochonu. (2024). Application of Meta-Analysis for Assessing Correlational Data in Diabetic Patients. African Journal of Advances in Science and Technology Research, 17(1), 120-138. https://doi.org/10.62154/ajastr.2024.017.010516
Articles

Copyright (c) 2024 Stella Ene Ochonu (Author)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Stella Ene Ochonu, Department of Statistics and Data Analytics, Faculty of Natural Sciences, Nasarawa State University, Keffi, Nigeria.

Department of Statistics and Data Analytics,

Faculty of Natural Sciences,

Nasarawa State University, Keffi, Nigeria.

Awodele O, Osuolale JA. (2015); Medication adherence in type 2 diabetes patients: study of patients in Alimosho General hospital, Igando, Lagos, Nigeria. Afr Health Sci 2015;15:513e22. DOI: https://doi.org/10.4314/ahs.v15i2.26

https://doi.org/10.4314/ahs.v15i2.26

Adehi M. U., Yakasai A. M., Dikko H. G., Asiribo E. O. and Dahiru T. 2017. "Risk of maternal mortality using relative risk ratios obtained from poisson regression analysis", International Journal of Development Research, 7, (09), 15405-15409.

American Diabetea Association. (2018). Introduction: Standards of Medical Care in Diabetes. Diabetes Care, 41(Supplement_1), S1-S2. https://doi.org/10.2337/dc18-Sint01 DOI: https://doi.org/10.2337/dc18-Sint01

https://doi.org/10.2337/dc18-Sint01

American Diabetea Association. (2020). Standards of Medical Care in Diabetes; Abridged for Primary Care Providers. Clinical Diabetes, 38(1), 10-38. https://doi.org/10.2337/cd20-as01 DOI: https://doi.org/10.2337/cd20-as01

https://doi.org/10.2337/cd20-as01

American Diabetes Association. (2022). Standards of Medical Care in Diabetes-2022 Abridged for Primary Care Providers. Clinical Diabetes, 40(1), 10-38. https://doi.org/10.2337/cd22-as01 DOI: https://doi.org/10.2337/cd22-as01

https://doi.org/10.2337/cd22-as01

Adisa R, Alutundu MB, Fakeye TO.(2009) Factors contributing to nonadherence to oral hypoglycaemic medications among ambulatory type 2 diabetes patients in Southwestern Nigeria. Pharmacy Pract 2009;7: 163e9. DOI: https://doi.org/10.4321/S1886-36552009000300006

https://doi.org/10.4321/S1886-36552009000300006

Bernal, J.L.; Cummins, S.; Gasparrini, A. Interrupted time series regression for the evaluation of public health interventions: A tutorial. Int. J. Epidemiol. 2017, 46, 348-355. [CrossRef]

Bamgboye EL. (2003); Hemodialysis: management problems in developing countries, with Nigeria as a surrogate. Kidney Int;63:593e5. DOI: https://doi.org/10.1046/j.1523-1755.63.s83.19.x

https://doi.org/10.1046/j.1523-1755.63.s83.19.x

Banday, M. Z., Sameer, A. S., & Nissar, S. (2020). Pathophysiology of diabetes: An overview. Avicenna Journal of Medicine, 10(04), 174-188. https://doi.org/10.4103/ajm.ajm_53_20 DOI: https://doi.org/10.4103/ajm.ajm_53_20

https://doi.org/10.4103/ajm.ajm_53_20

Bandura, A. (1991). Social cognitive theory of self-regulation. Organizational Behavior and Human Decision Processes, 50(2), 248-287. DOI: https://doi.org/10.1016/0749-5978(91)90022-L

https://doi.org/10.1016/0749-5978(91)90022-L

Chinenye S, Young E. (2011); State of diabetes care in Nigeria: a review. Nigerian Health J 2011;11:101e6.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates.

Fasanmade O. A., Dagogo-Jack S. (2015); Diabetes Care in Nigeria Icahn School of Medicine at Mount Sinai. This is an open access article under the CC BY-NC-ND license. DOI: https://doi.org/10.1016/j.aogh.2015.12.012

https://doi.org/10.1016/j.aogh.2015.12.012

Goldenberg, J. Z., Day, A., Brinkworth, G. D., Sato, J., Yamada, S., Jönsson, T., Beardsley, J., Johnson, J. A., Thabane, L., & Johnston, B. C. (2021). Efficacy and safety of low and very low carbohydrate diets for type 2 diabetes remission: systematic review and meta-analysis of published and unpublished randomized trial data. BMJ (Clinical research ed.), 372, m4743. https://doi.org/10.1136/bmj.m4743 DOI: https://doi.org/10.1136/bmj.m4743

https://doi.org/10.1136/bmj.m4743

Galicia-Garcia, U., Benito-Vicente, A., Jebari, S., Larrea-Sebal, A., Siddiqi, H., Uribe, K. B., Ostolaza, H., & Martín, C. (2020). Pathophysiology of Type 2 Diabetes Mellitus. International Journal of Molecular Sciences, 21(17), 6275. https://doi.org/10.3390/ijms21176275 DOI: https://doi.org/10.3390/ijms21176275

https://doi.org/10.3390/ijms21176275

González-Touya, M.; Carmona, R.; Sarría-Santamera, A. (2021); Evaluating the Impact of the Diabetes Mellitus Strategy for the National Health System: An Interrupted Time Series Analysis. Healthcare, 9, 873. https://doi.org/10.3390/healthcare9070873 DOI: https://doi.org/10.3390/healthcare9070873

https://doi.org/10.3390/healthcare9070873

International Diabetes Federation. (2022). International Diabetes Federation Annual Report 2022. http://www.idf.org/

Integrated African Health Observatory. (2023). Diabetes, a silent killer in Africa. WHO Analytical Fact Sheet Fact Sheet, 1. https://www.linkedin.com/company/iaho/

Katsarou, A., Gudbjörnsdottir, S., Rawshani, A., Dabelea, D., Bonifacio, E., Anderson, B. J., Jacobsen, L. M., Schatz, D. A., & Lernmark, Å. (2017). Type 1 diabetes mellitus. Nature Reviews Disease Primers, 3(1), 17016. https://doi.org/10.1038/nrdp.2017.16 DOI: https://doi.org/10.1038/nrdp.2017.16

https://doi.org/10.1038/nrdp.2017.16

Moucheraud, C., Lenz, C., Latkovic, M., & Wirtz, V. J. (2019). The costs of diabetes treatment in low- and middle-income countries: A systematic review. BMJ Global Health, 4(1), e001258. https://doi.org/10.1136/bmjgh-2018-001258 DOI: https://doi.org/10.1136/bmjgh-2018-001258

https://doi.org/10.1136/bmjgh-2018-001258

Marciano, L., Camerini, A. L., & Schulz, P. J. (2019). The Role of Health Literacy in Diabetes Knowledge, Self-Care, and Glycemic Control: a Meta-analysis. Journal of general internal medicine, 34(6), 1007-1017. https://doi.org/10.1007/s11606-019-04832-y DOI: https://doi.org/10.1007/s11606-019-04832-y

https://doi.org/10.1007/s11606-019-04832-y

Nwankwo CH, Nandy B, Nwankwo BO.(2010) Factors influencing diabetes management outcome among patients attending government health facilities in South east Nigeria. Int J Trop Med 2010;5:28e36. DOI: https://doi.org/10.3923/ijtmed.2010.28.36

https://doi.org/10.3923/ijtmed.2010.28.36

Nwafor A, Owhoji A. (2015) Prevalence of diabetes mellitus among Nigerians in Port Harcourt correlates with socioeconomic status. J Appl Sci Environ Management;5:75e7. DOI: https://doi.org/10.4314/jasem.v5i1.54950

https://doi.org/10.4314/jasem.v5i1.54950

National Bureau of Statistics. (2015); Nigeria Gross Domestic Product Report, Quarter Four, 2014. Available at: www.nigerianstat.gov.ng. Accessed December 6, 2015.

Popoviciu, M.S.; Marin, V.N.; Vesa, C.M.; Stefan, S.D.; Stoica, R.A.; Serafinceanu, C.; Merlo, E.M.; Rizvi, A.A.; Rizzo, M.; Busnatu, S.; et al. (2022) Correlations between Diabetes Mellitus Self-Care Activities and Glycaemic Control in the Adult Population: A Cross-Sectional Study. Healthcare, 10, 174. https://doi.org/10.3390/healthcare10010174. DOI: https://doi.org/10.3390/healthcare10010174

https://doi.org/10.3390/healthcare10010174

Ogbera AO, Kapur A, Odeyemi K, et al. (2014) Screening for diabetes mellitus and human immune deficiency virus infection in persons with tuberculosis. J Prev Med Hyg;55:42e5.

Rothe, U.; Manuwald, U.; Kugler, J.; Schulze, J. Quality criteria/key components for high quality of diabetes management to avoid diabetes-related complications. J. Public Health 2020. [CrossRef] DOI: https://doi.org/10.1007/s10389-020-01227-w

https://doi.org/10.1007/s10389-020-01227-w

Rosengren, A. Cardiovascular disease in diabetes type 2: Current concepts. J. Intern. Med. 2018, 284, 240-253. [CrossRef] DOI: https://doi.org/10.1111/joim.12804

https://doi.org/10.1111/joim.12804

Rubin RR. (2005); Adherence to pharmacotherapy in patients with type 2 diabetes. Am J Med 2005; 118:27Se34S. DOI: https://doi.org/10.1016/j.amjmed.2005.04.012

https://doi.org/10.1016/j.amjmed.2005.04.012

Sarría-Santamera, A. (2020); Diseños y metodologías para evaluar el impacto de las intervenciones. Rev. Esp. Cardiol. 73, 689. [CrossRef] DOI: https://doi.org/10.1016/j.recesp.2019.12.026

https://doi.org/10.1016/j.recesp.2019.12.026

WHO. (2023). Mean fasting blood glucose [The Global Health Observatory]. https://www.who.int/data/gho/indicator-metadata-registry/imr-details/2380#:~:text=The%20expected%20values%20for%20normal,and%20monitoring%20glycemia%20are%20recommended.

Yohannes, Y. B., Woldeamanuel, B. T., & Ayano, B. (2021). Fasting Blood Glucose Level Progression and Its Associated Factors Among Diabetic Patients Attending Treatment In North Shewa Hospitals, Oromia, Ethiopia. Research Square pp1-18 https://doi.org/10.21203/rs.3.rs-1195059/v1 DOI: https://doi.org/10.21203/rs.3.rs-1195059/v1

https://doi.org/10.21203/rs.3.rs-1195059/v1

Zhang, Q., Xue, T.; Li, Q.; Lin, W.; Weng, J.; Li, L.; Chen, G. (2020); Blood glucose levels in elderly subjects with type 2 diabetes during COVID-19 outbreak: A retrospective study in a single center. medRxiv, 3, 20048579.

Engel, G. L. (1977). The need for a new medical model: A challenge for biomedicine. Science, 196(4286), 129-136. DOI: https://doi.org/10.1126/science.847460

https://doi.org/10.1126/science.847460

Hedges, L. V., & Vevea, J. L. (1998). Fixed- and random-effects models in meta-analysis. Psychological Methods, 3(4), 486-504. DOI: https://doi.org/10.1037//1082-989X.3.4.486

https://doi.org/10.1037//1082-989X.3.4.486

Higgins, J. P., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. BMJ, 327(7414), 557-560. DOI: https://doi.org/10.1136/bmj.327.7414.557

https://doi.org/10.1136/bmj.327.7414.557

Kline, R. B. (2015). Principles and practice of structural equation modeling (4th ed.). Guilford Press.

Rosenstock, I. M. (1974). Historical origins of the health belief model. Health Education Monographs, 2(4), 328-335. DOI: https://doi.org/10.1177/109019817400200403

https://doi.org/10.1177/109019817400200403

Sterne, J. A., Egger, M., & Smith, G. D. (2005). Investigating and dealing with publication and other biases in meta-analysis. BMJ, 323(7304), 101-105. DOI: https://doi.org/10.1136/bmj.323.7304.101

https://doi.org/10.1136/bmj.323.7304.101

American Diabetes Association. (2020). Standards of Medical Care in Diabetes-2020. Diabetes Care, 43(Supplement 1), S1-S212. DOI: https://doi.org/10.2337/dc20-Sint

https://doi.org/10.2337/dc20-Sint

Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to Meta-Analysis. John Wiley & Sons.

https://doi.org/10.1002/9780470743386

Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences (3rd ed.). Routledge.

Miller, R. G., Secrest, A. M., Sharma, R. K., Songer, T. J., & Orchard, T. J. (2002). Improvements in the life expectancy of type 1 diabetes. The Pittsburgh Epidemiology of Diabetes Complications Study cohort. Diabetes, 51(4), 1254-1260.

Nathan, D. M., Turgeon, H., & Regan, S. (2009). Relationship between glycated hemoglobin levels and mean glucose levels over time. Diabetologia, 52(8), 1564-1572.

Schmidt, F. L., & Hunter, J. E. (2015). Methods of Meta-Analysis: Correcting Error and Bias in Research Findings (3rd ed.). SAGE Publications. DOI: https://doi.org/10.4135/9781483398105

https://doi.org/10.4135/9781483398105

Stratton, I. M., Adler, A. I., Neil, H. A. W., Matthews, D. R., Manley, S. E., Cull, C. A., Hadden, D., Turner, R. C., & Holman, R. R. (2000). Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ, 321(7258), 405-412. DOI: https://doi.org/10.1136/bmj.321.7258.405

https://doi.org/10.1136/bmj.321.7258.405

Tuomilehto, J., Lindström, J., Eriksson, J. G., Valle, T. T., Hämäläinen, H., Ilanne-Parikka, P., ... & Uusitupa, M. (2001). Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. New England Journal of Medicine, 344(18), 1343-1350. DOI: https://doi.org/10.1056/NEJM200105033441801

https://doi.org/10.1056/NEJM200105033441801

Goyal, R., & Jialal, I. (2018). Association between inflammation markers and Type 2 Diabetes Mellitus: A meta-analysis. Journal of Diabetes Research, 2018.

Zhou, H., Chen, B., & Jin, W. (2019). Vitamin D deficiency and Type 2 Diabetes Mellitus: An updated meta-analysis. Diabetes Care, 42(5), 1248-1258.

Li, S., Wang, J., & Zhang, B. (2017). Glycosylated hemoglobin and cardiovascular complications in diabetes: A meta-analysis. Journal of the American College of Cardiology, 70(12), 1578-1588.

Wang, Y., Fang, Q., & Tang, Y. (2020). Obesity and Type 2 Diabetes: A meta-analysis of cohort studies. The Lancet Diabetes & Endocrinology, 8(3), 191-200.

Palmer, N. D., McCarthy, M. I., & Hicks, P. J. (2015). Genetic determinants of Type 2 Diabetes: A meta-analysis of genome-wide association studies. Diabetes, 64(2), 432-444.

Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2009). Introduction to Meta-Analysis. John Wiley & Sons.

https://doi.org/10.1002/9780470743386

Porta, M. (2008). A Dictionary of Epidemiology (5th ed.). Oxford University Press.

Higgins, J. P. T., & Green, S. (Eds.). (2011). Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0 [updated March 2011]. The Cochrane Collaboration. Available from http://handbook.cochrane.org

Petticrew, M., & Roberts, H. (2006). Systematic Reviews in the Social Sciences: A Practical Guide. Blackwell Publishing. DOI: https://doi.org/10.1002/9780470754887

https://doi.org/10.1002/9780470754887

Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2011). Introduction to meta-analysis. John Wiley & Sons.

Egger, M., Davey Smith, G., & Altman, D. G. (2001). Systematic reviews in health care: Meta-analysis in context. BMJ Books. DOI: https://doi.org/10.1002/9780470693926

https://doi.org/10.1002/9780470693926

Higgins, J. P. T., & Green, S. (Eds.). (2011). Cochrane Handbook for Systematic Reviews of Interventions. The Cochrane Collaboration.

Ioannidis, J. P. A. (2016). The mass production of redundant, misleading, and conflicted systematic reviews and meta-analyses. The Milbank Quarterly, 94(3), 485-514. DOI: https://doi.org/10.1111/1468-0009.12210

https://doi.org/10.1111/1468-0009.12210

Kumar, R. (2019). Research Methodology: A Step-by-Step Guide for Beginners (5th ed.). Sage Publications

Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to Meta-Analysis. John Wiley & Sons.

https://doi.org/10.1002/9780470743386

Sutton, A. J., Abrams, K. R., Jones, D. R., Sheldon, T. A., & Song, F. (2000). Methods for Meta-Analysis in Medical Research. John Wiley & Sons.

Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to Meta-Analysis. John Wiley & Sons.

https://doi.org/10.1002/9780470743386

Hedges, L. V., & Olkin, I. (1985). Statistical Methods for Meta-Analysis. Academic Press.

Higgins, J. P. T., & Green, S. (Eds.). (2011). Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0 [updated March 2011]. The Cochrane Collaboration. Available from www.handbook.cochrane.org.

Hunter, J. E., & Schmidt, F. L. (2004). Methods of Meta-Analysis: Correcting Error and Bias in Research Findings (2nd ed.). SAGE Publications, Inc.

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & The PRISMA Group. (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097 DOI: https://doi.org/10.1371/journal.pmed.1000097

https://doi.org/10.1371/journal.pmed.1000097

American Diabetes Association. (2020). Classification and diagnosis of diabetes: Standards of medical care in diabetes-2020. Diabetes Care, 43(Supplement 1), S14-S31. doi:10.2337/dc20-S002 DOI: https://doi.org/10.2337/dc20-S002

https://doi.org/10.2337/dc20-S002

World Health Organization. (2021). Diabetes. Retrieved from https://www.who.int/news-room/fact-sheets/detail/diabetes

International Diabetes Federation. (2019). IDF Diabetes Atlas (9th ed.).

Higgins, J. P., & Green, S. (Eds.). (2011). Cochrane handbook for systematic reviews of interventions (Vol. 4). John Wiley & Sons.

Egger, M., Smith, G. D., & Altman, D. G. (1995). Systematic Reviews in Health Care: Meta-Analysis in Context. London: BMJ Publishing Group.

Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2009). Introduction to Meta-Analysis. John Wiley & Sons. DOI: https://doi.org/10.1002/9780470743386

https://doi.org/10.1002/9780470743386

Chew, B. H., Vos, R., Mohd-Sidik, S., & Rutten, G. E. H. M. (2019). Diabetes-related distress, depression and distress-depression among adults with type 2 diabetes mellitus in Malaysia. PLoS ONE, 14(3), e0213421. https://doi.org/10.1371/journal.pone.0213421