Gestational Diabetes Mellitus and Chemical Exposure A Meta-Analysis
“crossref”/

Main Article Content

Abdullahi Adamu Ja'e 
Kabeer Abubakar 
Marry U. Adehi 
Najb Isyaku Audi 
Sadeeq Muazu Maifata 

Abstract

Gestational diabetes mellitus (GDM) is a common pregnancy complication with significant implications for maternal and fetal health. Recent studies suggest environmental chemical exposure, particularly to endocrine-disrupting chemicals (EDCs) such as polychlorinated biphenyls (PCBs) and phthalates, may be a novel risk factor for GDM. This meta-analysis investigates the association between exposure to environmental chemicals and the risk of developing GDM using random-effects models by comprehensive electronic search carried out in the EMBASE, PubMed, and Web of Science databases for relevant studies from their inception to November 2021. The pooled odds ratio (OR) for the association between environmental chemical exposure and gestational diabetes mellitus (GDM) is approximately 5.923, with a 95% confidence interval (CI) ranging from 5.314 to 6.60 which is a statistically significant association between higher levels of environmental chemical exposure and increased GDM risk. The findings underscore the need for public health strategies aimed at reducing exposure to harmful chemicals among pregnant women to mitigate GDM risk.

Article Details

Ja'e, A. A., Abubakar, K., Adehi, M. U., Audi, N. I., & Maifata, S. M. (2024). Gestational Diabetes Mellitus and Chemical Exposure: A Meta-Analysis. African Journal of Advances in Science and Technology Research, 17(1), 213-226. https://doi.org/10.62154/ajastr.2024.017.010508
Articles

Copyright (c) 2024 Abdullahi Adamu Ja'e, Kabeer Abubakar, Marry U. Adehi, Najb Isyaku Audi, Sadeeq Muazu Maifata (Author)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Abdullahi Adamu Ja'e, Federal University of Lafia, Nigeria.

Department of Human Physiology,

Faculty of Basic Medical Sciences, Federal University of Lafia.

Kabeer Abubakar, Federal University of Lafia, Nigeria.

Department of Human Anatomy,

Faculty of Basic Medical Sciences, Federal University of Lafia.

Marry U. Adehi, Nasarawa State University Keffi.

Department of Statistics,

Faculty of Natural and Applied Sciences, Nasarawa State University, Keffi.

Najb Isyaku Audi, Nasarawa State University Keffi.

Department of Statistics,

Faculty of Natural and Applied Sciences, Nasarawa State University, Keffi.

Sadeeq Muazu Maifata, Federal University of Lafia, Nigeria.

Department of Human Physiology,

Faculty of Basic Medical Sciences, Federal University of Lafia.

Abera, D. A., Larbie, C., Abugri, J., Ofosu, M., Mutocheluh, M., & Dongsogo, J. (2024). Prevalence and predictors of gestational diabetes mellitus in Sub-Saharan Africa: A 10-year systematic review. Endocrinology, Diabetes & Metabolism, 7(3), Article e00478. https://doi.org/10.1002/edm2.478

https://doi.org/10.1002/edm2.478 DOI: https://doi.org/10.1002/edm2.478

American Diabetes Association. (2014). Diagnosis and classification of diabetes mellitus. Diabetes Care, 37(Suppl 1), S81-S90.

https://doi.org/10.2337/dc14-S081 DOI: https://doi.org/10.2337/dc14-S081

Begg, C. B., & Mazumdar, M. (1994). Operating characteristics of a rank correlation test for publication bias. Biometrics, 50(4), 1088-1100.

https://doi.org/10.2307/2533446 DOI: https://doi.org/10.2307/2533446

Burlina, A. P., Lachmann, R. H., Manara, R., Cazzorla, C., Celato, A., van Spronsen, F. J., & Burlina, A. (2019). The neurological and psychological phenotype of adult patients with early-treated phenylketonuria: A systematic review. Journal of Inherited Metabolic Disease, 42(2), 209-229. https://doi.org/10.1002/jimd.12065

https://doi.org/10.1002/jimd.12065 DOI: https://doi.org/10.1002/jimd.12065

Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). An introduction to meta-analysis. Wiley. https://doi.org/10.1002/9780470743386

https://doi.org/10.1002/9780470743386 DOI: https://doi.org/10.1002/9780470743386

Chiefari, E., Arcidiacono, B., Foti, D., & Brunetti, A. (2017). Gestational diabetes mellitus: An updated overview. Journal of Endocrinological Investigation, 40(9), 899-909. https://doi.org/10.1007/s40618-016-0607-5

https://doi.org/10.1007/s40618-016-0607-5 DOI: https://doi.org/10.1007/s40618-016-0607-5

Cheng-Yang, H., Gao, X., Fang, Y., Jiang, W., Huang, K., Hua, X. G., Yang, X. J., Chen, H. B., Jiang, Z. X., Zhang, X. J., ... Zhang, Q. (2020). Human epidemiological evidence about the association between air pollution exposure and gestational diabetes mellitus: Systematic review and meta-analysis. Environmental Research, 180, Article 108843. https://doi.org/10.1016/j.envres.2019.108843

https://doi.org/10.1016/j.envres.2019.108843 DOI: https://doi.org/10.1016/j.envres.2019.108843

Coory, M. D. (2010). Comment on: Heterogeneity in meta-analysis should be expected and appropriately quantified. International Journal of Epidemiology, 39(3), 932-933. https://doi.org/10.1093/ije/dyp157

https://doi.org/10.1093/ije/dyp157 DOI: https://doi.org/10.1093/ije/dyp157

Davis, S., et al. (2018). Lead exposure and family history as determinants of gestational diabetes. Pregnancy and Endocrine Research, 47(2), 145-155. https://doi.org/10.1016/j.per.2018.04.003

DerSimonian, R., & Laird, N. (2015). Meta-analysis in clinical trials revisited. Contemporary Clinical Trials, 45(Part A), 139-145. https://doi.org/10.1016/j.cct.2015.09.002

https://doi.org/10.1016/j.cct.2015.09.002 DOI: https://doi.org/10.1016/j.cct.2015.09.002

Eberle, C., & Stichling, S. (2022). Environmental health influences in pregnancy and risk of gestational diabetes mellitus: A systematic review. BMC Public Health, 22(1), Article 1572. https://doi.org/10.1186/s12889-022-13965-5

https://doi.org/10.1186/s12889-022-13965-5 DOI: https://doi.org/10.1186/s12889-022-13965-5

Egger, M., Davey Smith, G., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ, 315(7109), 629-634. https://doi.org/10.1136/bmj.315.7109.629

https://doi.org/10.1136/bmj.315.7109.629 DOI: https://doi.org/10.1136/bmj.315.7109.629

Farooqui, R., Afsar, N., & Afroze, I. A. (2019). Role and significance of hematological parameters in diabetes mellitus. MCV, 4-8.

https://doi.org/10.21276/apalm.2355 DOI: https://doi.org/10.21276/apalm.2355

Fu, L., Wang, B., Yuan, T., Chen, X., Ao, Y., Fitzpatrick, T., Li, P., Zhou, Y. F., Duan, Q., Luo, G., Fan, S., Lu, Y., Feng, A., Zhan, Y., Liang, B., Cai, W., Zhang, L., Du, X., Li, L., ... Zou, H. (2020). Clinical characteristics of coronavirus disease 2019 (COVID-19) in China: A systematic review and meta-analysis. The Journal of Infection, 80(6), 656-665. https://doi.org/10.1016/j.jinf.2020.03.041

https://doi.org/10.1016/j.jinf.2020.03.041 DOI: https://doi.org/10.1016/j.jinf.2020.03.041

Garcia, M., & Fernandez, L. (2022). Airborne pollutants and pre-pregnancy diabetes: A cohort analysis of gestational diabetes. Global Environmental Health Review, 50(8), 987-995. https://doi.org/10.1016/j.gehr.2022.08.012

Giuliani, A., Zuccarini, M., Cichelli, A., Khan, H., & Reale, M. (2020). Critical review on the presence of phthalates in food and evidence of their biological impact. International Journal of Environmental Research and Public Health, 17(16), 5655. https://doi.org/10.3390/ijerph17165655

https://doi.org/10.3390/ijerph17165655 DOI: https://doi.org/10.3390/ijerph17165655

Hasbullah, F. Y., Mohd Yusof, B. N., Shyam, S., Abdul Ghani, R., & Mohamed Khir, H. I. (2023). Dietary patterns associated with abnormal glucose tolerance following gestational diabetes mellitus: The My Nutritype Study. Nutrients, 15(12), Article 2819. https://doi.org/10.3390/nu15122819

https://doi.org/10.3390/nu15122819 DOI: https://doi.org/10.3390/nu15122819

Higgins, J. P., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. BMJ, 327(7414), 557-5560. https://doi.org/10.1136/bmj.327.7414.557

https://doi.org/10.1136/bmj.327.7414.557 DOI: https://doi.org/10.1136/bmj.327.7414.557

Hunter, J. E., & Schmidt, F. L. (2004). Methods of meta-analysis: Corrected error and bias in research findings. Journal of the American Statistical Association, 20(7). https://doi.org/10.2307/2289738

https://doi.org/10.2307/2289738 DOI: https://doi.org/10.2307/2289738

Johnson, R., et al. (2017). PCB exposure and genetic predisposition in gestational diabetes mellitus. Endocrinology and Metabolism Studies, 33(6), 589-599. https://doi.org/10.1016/j.endms.2017.06.008

Kahn, L. G., Philippat, C., Nakayama, S. F., Slama, R., & Trasande, L. (2020). Endocrine-disrupting chemicals: Implications for human health. The Lancet. Diabetes & Endocrinology, 8(8), 703-708. https://doi.org/10.1016/S2213-8587(20)30129-7

https://doi.org/10.1016/S2213-8587(20)30129-7 DOI: https://doi.org/10.1016/S2213-8587(20)30129-7

Laws, M. J., Neff, A. M., Brehm, E., Warner, G. R., & Flaws, J. A. (2021). Endocrine disrupting chemicals and reproductive disorders in women, men, and animal models. Advances in Pharmacology, 92, 151-190. https://doi.org/10.1016/bs.apha.2021.03.008

https://doi.org/10.1016/bs.apha.2021.03.008 DOI: https://doi.org/10.1016/bs.apha.2021.03.008

Lee, H., Kim, M., Kiang, P., Shi, L., Tan, K., Chea, P., Peou, S., & Grigg-Saito, D. (2016). [Title unavailable]. Public Health Nursing.

Li, H., et al. (2020). Phthalates and poor diet increase the risk of gestational diabetes: A case-control study. International Journal of Diabetes in Pregnancy, 28(5), 302-310. https://doi.org/10.1016/j.ijdp.2020.07.014

Lin, J. Y., & Yin, R. X. (2023). Exposure to endocrine-disrupting chemicals and type 2 diabetes mellitus in later life. Exposure and Health, 15(1), 199-229. https://doi.org/10.1007/s12403-022-00486-0

https://doi.org/10.1007/s12403-022-00486-0 DOI: https://doi.org/10.1007/s12403-022-00486-0

Mitra, T., Gulati, R., Ramachandran, K., Rajiv, R., Enninga, E. A. L., Pierret, C. K., Kumari, R. S., & Janardhanan, R. (2024). Endocrine-disrupting chemicals: Gestational diabetes and beyond. Diabetology & Metabolic Syndrome, 16(1), Article 95. https://doi.org/10.1186/s13098-024-01317-9

https://doi.org/10.1186/s13098-024-01317-9 DOI: https://doi.org/10.1186/s13098-024-01317-9

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & PRISMA Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLOS Medicine, 6(7), Article e1000097. https://doi.org/10.1371/journal.pmed.1000097

https://doi.org/10.1371/journal.pmed.1000097 DOI: https://doi.org/10.1371/journal.pmed.1000097

Molina-Vega, M., Gutiérrez-Repiso, C., Muñoz-Garach, A., Lima-Rubio, F., Morcillo, S., Tinahones, F. J., & Picón-César, M. J. (2020). Relationship between environmental temperature and the diagnosis and treatment of gestational diabetes mellitus: An observational retrospective study. The Science of the Total Environment, 744, Article 140994. https://doi.org/10.1016/j.scitotenv.2020.140994

https://doi.org/10.1016/j.scitotenv.2020.140994 DOI: https://doi.org/10.1016/j.scitotenv.2020.140994

Patel, R., et al. (2016). Persistent organic pollutants and socioeconomic status in gestational diabetes. Diabetes and Environment Journal, 25(3), 212-225. https://doi.org/10.1016/j.denv.2016.03.006

Plante, I., Winn, L. M., Vaillancourt, C., Grigorova, P., & Parent, L. (2022). Killing two birds with one stone: Pregnancy is a sensitive window for endocrine effects on both the mother and the fetus. Environmental Research, 205, 112435. https://doi.org/10.1016/j.envres.2021.112435

https://doi.org/10.1016/j.envres.2021.112435 DOI: https://doi.org/10.1016/j.envres.2021.112435

Park, J., Lee, H., Lee, S., & Lee, H. (2022). Interventions on reducing exposure to endocrine-disrupting chemicals in human health care context: A scoping review. Risk Management and Healthcare Policy, 15, 779-791. https://doi.org/10.2147/RMHP.S358561

https://doi.org/10.2147/RMHP.S358561 DOI: https://doi.org/10.2147/RMHP.S358561

Rodriguez, P., et al. (2019). Heavy metals and smoking in relation to gestational diabetes risk. Journal of Occupational Health, 40(5), 321-330. https://doi.org/10.1016/j.joh.2019.05.011

Sacks, S., Chaple, M., Sacks, J. Y., McKendrick, K., & Cleland, C. M. (2012). Randomized trial of a reentry modified therapeutic community for offenders with co-occurring disorders: Crime outcomes. Journal of Substance Abuse Treatment, 42(3), 247-259. https://doi.org/10.1016/j.jsat.2011.07.011

https://doi.org/10.1016/j.jsat.2011.07.011 DOI: https://doi.org/10.1016/j.jsat.2011.07.011

Smith, J., & Roberts, M. (2019). Air pollution and high BMI as contributing factors to gestational diabetes mellitus. Environmental Research Journal, 52(4), 450-456. https://doi.org/10.1016/j.envres.2019.02.007

https://doi.org/10.1016/j.envres.2019.02.007 DOI: https://doi.org/10.1016/j.envres.2019.02.007

Soomro, M. H., Baiz, N., Huel, G., Yazbeck, C., Botton, J., Heude, B., Bornehag, C. G., & Annesi-Maesano, I. (2019). Exposure to heavy metals during pregnancy related to gestational diabetes mellitus in diabetes-free mothers. Science of the Total Environment, 656, 870-876. https://doi.org/10.1016/j.scitotenv.2018.11.422

https://doi.org/10.1016/j.scitotenv.2018.11.422 DOI: https://doi.org/10.1016/j.scitotenv.2018.11.422

Sun, Y., Li, X., Benmarhnia, T., Chen, J., Avila, C., Sacks, D. A., Chiu, V., Slezak, J., Molitor, J., Getahun, D., & Wu, J. (2022). Exposure to air pollutant mixture and gestational diabetes mellitus in Southern California: Results from electronic health record data of a large pregnancy cohort. Environment International, 158, 106888. https://doi.org/10.1016/j.envint.2021.106888

https://doi.org/10.1016/j.envint.2021.106888 DOI: https://doi.org/10.1016/j.envint.2021.106888

Schulz, M. C., & Sargis, R. M. (2021). Inappropriately sweet: Environmental endocrine-disrupting chemicals and the diabetes pandemic. Advances in Pharmacology, 92, 419-456. https://doi.org/10.1016/bs.apha.2021.04.002

https://doi.org/10.1016/bs.apha.2021.04.002 DOI: https://doi.org/10.1016/bs.apha.2021.04.002

Shi, H., Jan, J., Hardesty, J. E., Falkner, K. C., Prough, R. A., Balamurugan, A. N., Mokshagundam, S. P., Chari, S. T., & Cave, M. C. (2019). Polychlorinated biphenyl exposures differentially regulate hepatic metabolism and pancreatic function: Implications for nonalcoholic steatohepatitis and diabetes. Toxicology and Applied Pharmacology, 363, 22-33. https://doi.org/10.1016/j.taap.2018.10.011

https://doi.org/10.1016/j.taap.2018.10.011 DOI: https://doi.org/10.1016/j.taap.2018.10.011

Thompson, L., et al. (2018). BPA exposure and low physical activity as risk factors for gestational diabetes mellitus: A cohort study. Journal of Environmental Health, 45(3), 125-135. https://doi.org/10.1016/j.envh.2018.03.001

Williams, T., & Green, C. (2020). Dioxin exposure and maternal obesity in gestational diabetes risk. Maternal and Child Health Journal, 62(1), 78-85. https://doi.org/10.1016/j.mchj.2020.02.010

Yan, D., Jiao, Y., Yan, H., Liu, T., & Yuan, J. (2022). Endocrine-disrupting chemicals and the risk of gestational diabetes mellitus: A systematic review and meta-analysis. Environmental Health: A Global Access Science Source, 21(1), Article 53. https://doi.org/10.1186/s12940-022-00858-8

https://doi.org/10.1186/s12940-022-00858-8 DOI: https://doi.org/10.1186/s12940-022-00858-8

Yuen, L., Saeedi, P., Riaz, M., Karuranga, S., Divakar, H., Levitt, N., Yang, X., & Simmons, D. (2019). Projections of the prevalence of hyperglycemia in pregnancy in 2019 and beyond: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Research and Clinical Practice, 157, Article 107841. https://doi.org/10.1016/j.diabres.2019.107841

https://doi.org/10.1016/j.diabres.2019.107841 DOI: https://doi.org/10.1016/j.diabres.2019.107841

Zhang, Q., et al. (2021). Pesticide exposure and age as risk factors for gestational diabetes: A prospective cohort study. Diabetes and Pregnancy Review, 18(2), 210-220. https://doi.org/10.1016/j.dpr.2021.03.005